

    
      
          
            
  
BBC micro:bit MicroPython documentation

Welcome!

The BBC micro:bit [https://microbit.org] is a small computing device for
children. One of the languages it understands is the popular Python programming
language. The version of Python that runs on the BBC micro:bit is called
MicroPython.

This documentation includes lessons for teachers
and API documentation for developers (check out the index on the left). We hope
you enjoy developing for the BBC micro:bit using MicroPython.

If you’re a new programmer, teacher or unsure where to start, begin with the
Tutorials and use the micro:bit Python Editor [https://python.microbit.org]
to program the micro:bit.


Note

The MicroPython API will not work in the MakeCode editor, as this
uses a different version of Python. [https://support.microbit.org/support/solutions/articles/19000111744-makecode-python-and-micropython]


  
    

    Introduction
    

    
 
  

    
      
          
            
  
Introduction

We suggest you use the micro:bit Python Editor [https://python.microbit.org]
or Mu [https://codewith.mu/] when working through these tutorials.

Connect your micro:bit to your computer via a USB lead.

Write your script in the editor window and click the “Download” or “Flash” button to
transfer it to the micro:bit.

If you have any problems with MicroPython or the editor, you can get support from the
Micro:bit Educational Foundation team via support.microbit.org [https://support.microbit.org].


Tutorials


	Hello, World!

	Images
	DIY Images

	Animation





	Buttons
	Event Loops

	Handling an Event





	Input/Output Pins
	Ticklish Python

	Bleeps and Bloops





	Music
	Wolfgang Amadeus Microbit

	Sound Effects





	Random
	Random Numbers

	Seeds of Chaos





	Movement
	Musical Mayhem





	Gestures
	Magic-8





	Direction
	Compass





	Storage
	Open Sesame

	OS SOS

	File Transfer

	Mainly main.py





	Speech
	DALEK Poetry

	Say Something

	Poetry on Demand

	Phonemes

	Sing A Song of Micro:bit





	Network
	Connection

	Signal

	Protocol

	Message

	Application

	The End Result





	Radio
	Layers upon Layers

	Bytes

	Addressing

	Fireflies





	Next Steps





Python is one of the world’s most popular [http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html] programming languages. Every day, without
realising, you probably use software written using Python. All sorts of
companies and organisations use Python for a diverse range of applications.
Google, NASA, Bank of America, Disney, CERN, YouTube, Mozilla, The Guardian -
the list goes on and covers all sectors of the economy, science and the arts.

For example, do you remember the announcement of the discovery of gravitational waves [http://www.bbc.co.uk/news/science-environment-35552207]? The instruments used to make the measurements were controlled with Python [https://www.reddit.com/r/IAmA/comments/45g8qu/we_are_the_ligo_scientific_collaboration_and_we/czxnlux].

Put simply, if you teach or learn Python, you are developing a highly valuable
skill that applies to all areas of human endeavour.

One such area is the BBC’s amazing micro:bit device. It runs a version of
Python called MicroPython that’s designed to run on small computers like the BBC
micro:bit. It’s a full implementation of Python 3 so when you move onto other
things (such as programming Python on a Raspberry Pi) you’ll use exactly the
same language.

MicroPython does not include all the standard code libraries that come with
“regular” Python. However, we have created a special microbit module in
MicroPython that lets you control the device.

Python and MicroPython are free software. Not only does this mean you don’t pay
anything to use Python, but you are also free to contribute back to the Python
community. This may be in the form of code, documentation, bug reports, running
a community group or writing tutorials (like this one). In fact, all the Python
related resources for the BBC micro:bit have been created by an international
team of volunteers working in their free time.

These lessons introduce MicroPython and the BBC
micro:bit in easy-to-follow steps. Feel free to adopt and adapt them for
classroom based lessons, or perhaps just follow them on your own at home.

You’ll have most success if you explore, experiment and play. You can’t break
a BBC micro:bit by writing incorrect code. Just dive in!

A word of warning: you will fail many times, and that is fine. Failure is
how good software developers learn. Those of us who work as software
developers have a lot of fun tracking down bugs and avoiding the repetition of
mistakes.

If in doubt, remember the Zen of MicroPython:

Code,
Hack it,
Less is more,
Keep it simple,
Small is beautiful,

Be brave! Break things! Learn and have fun!
Express yourself with MicroPython.

Happy hacking! :-)





Best of luck!




          

      

      

    

  

  
    

    Hello, World!
    

    
 
  

    
      
          
            
  
Hello, World!

The traditional way to start programming in a new language is to get your
computer to say, “Hello, World!”.

[image: ../_images/scroll-hello1.gif]
This is easy with MicroPython:

from microbit import *
display.scroll("Hello, World!")





Each line does something special. The first line:

from microbit import *





…tells MicroPython to get all the stuff it needs to work with the BBC
micro:bit. All this stuff is in a module called microbit (a module
is a library of pre-existing code). When you import something you’re telling
MicroPython that you want to use it, and * is Python’s way to say
everything. So, from microbit import * means, in English, “I want to be
able to use everything from the microbit code library”.

The second line:

display.scroll("Hello, World!")





…tells MicroPython to use the display to scroll the string of characters
“Hello, World!”. The display part of that line is an object from the
microbit module that represents the device’s physical display (we say
“object” instead of “thingy”, “whatsit” or “doodah”). We can tell the display
to do things with a full-stop . followed by what looks like a command (in
fact it’s something we call a method). In this case we’re using the
scroll method. Since scroll needs to know what characters to scroll
across the physical display we specify them between double quotes (")
within parenthesis (( and )). These are called the arguments. So,
display.scroll("Hello, World!") means, in English, “I want you to use the
display to scroll the text ‘Hello, World!’”. If a method doesn’t need any
arguments we make this clear by using empty parenthesis like this: ().

Copy the “Hello, World!” code into your editor and flash it onto the device.
Can you work out how to change the message? Can you make it say hello to you?
For example, I might make it say “Hello, Nicholas!”. Here’s a clue, you need to
change the scroll method’s argument.


Warning

It may not work. :-)

This is where things get fun and MicroPython tries to be helpful. If
it encounters an error it will scroll a helpful message on the micro:bit’s
display. If it can, it will tell you the line number for where the error
can be found.

Python expects you to type EXACTLY the right thing. So, for instance,
Microbit, microbit and microBit are all different things to
Python. If MicroPython complains about a NameError it’s probably
because you’ve typed something inaccurately. It’s like the difference
between referring to “Nicholas” and “Nicolas”. They’re two different people
but their names look very similar.

If MicroPython complains about a SyntaxError you’ve simply typed code
in a way that MicroPython can’t understand. Check you’re not missing any
special characters like " or :. It’s like putting. a full stop in
the middle of a sentence. It’s hard to understand exactly what you mean.

Your microbit may stop responding: you cannot flash new code to it or
enter commands into the REPL. If this happens, try power cycling it. That
is, unplug the USB cable (and battery cable if it’s connected), then plug
the cable back in again. You may also need to quit and re-start your code
editor application.


  
    

    Images
    

    
 
  

    
      
          
            
  
Images

MicroPython is about as good at art as you can be if the only thing you have is
a 5x5 grid of red LEDs (light emitting diodes - the things that light up on the
front of the device). MicroPython gives you quite a lot of control over the
display so you can create all sorts of interesting effects.

MicroPython comes with lots of built-in pictures to show on the display.
For example, to make the device appear happy you type:

from microbit import *
display.show(Image.HAPPY)





I suspect you can remember what the first line does. The second line uses the
display object to show a built-in image. The happy image we want to
display is a part of the Image object and called HAPPY. We tell
show to use it by putting it between the parenthesis (( and )).

[image: ../_images/happy.png]
Here’s a list of the built-in images:



	Image.HEART


	Image.HEART_SMALL


	Image.HAPPY


	Image.SMILE


	Image.SAD


	Image.CONFUSED


	Image.ANGRY


	Image.ASLEEP


	Image.SURPRISED


	Image.SILLY


	Image.FABULOUS


	Image.MEH


	Image.YES


	Image.NO


	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1


	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW


	Image.TRIANGLE


	Image.TRIANGLE_LEFT


	Image.CHESSBOARD


	Image.DIAMOND


	Image.DIAMOND_SMALL


	Image.SQUARE


	Image.SQUARE_SMALL


	Image.RABBIT


	Image.COW


	Image.MUSIC_CROTCHET


	Image.MUSIC_QUAVER


	Image.MUSIC_QUAVERS


	Image.PITCHFORK


	Image.XMAS


	Image.PACMAN


	Image.TARGET


	Image.TSHIRT


	Image.ROLLERSKATE


	Image.DUCK


	Image.HOUSE


	Image.TORTOISE


	Image.BUTTERFLY


	Image.STICKFIGURE


	Image.GHOST


	Image.SWORD


	Image.GIRAFFE


	Image.SKULL


	Image.UMBRELLA


	Image.SNAKE


	Image.SCISSORS







There’s quite a lot! Why not modify the code that makes the micro:bit look
happy to see what some of the other built-in images look like? (Just replace
Image.HAPPY with one of the built-in images listed above.)


DIY Images

Of course, you want to make your own image to display on the micro:bit, right?

That’s easy.

Each LED pixel on the physical display can be set to one of ten values. If a
pixel is set to 0 (zero) then it’s off. It literally has zero brightness.
However, if it is set to 9 then it is at its brightest level. The values
1 to 8 represent the brightness levels between off (0) and full on
(9).

Armed with this information, it’s possible to create a new image like this:

from microbit import *

boat = Image("05050:"
             "05050:"
             "05050:"
             "99999:"
             "09990")

display.show(boat)





(When run, the device should display an old-fashioned “Blue Peter” sailing ship
with the masts dimmer than the boat’s hull.)

Have you figured out how to draw a picture? Have you noticed that each line of
the physical display is represented by a line of numbers ending in : and
enclosed between " double quotes? Each number specifies a brightness.
There are five lines of five numbers so it’s possible to specify the individual
brightness for each of the five pixels on each of the five lines on the
physical display. That’s how to create a new image.

Simple!

In fact, you don’t need to write this over several lines. If you think you can
keep track of each line, you can rewrite it like this:

boat = Image("05050:05050:05050:99999:09990")







Animation

Static images are fun, but it’s even more fun to make them move. This is also
amazingly simple to do with MicroPython ~ just use a list of images!

Here is a shopping list:

Eggs
Bacon
Tomatoes





Here’s how you’d represent this list in Python:

shopping = ["Eggs", "Bacon", "Tomatoes" ]





I’ve simply created a list called shopping and it contains three items.
Python knows it’s a list because it’s enclosed in square brackets ([ and
]). Items in the list are separated by a comma (,) and in this instance
the items are three strings of characters: "Eggs", "Bacon" and
"Tomatoes". We know they are strings of characters because they’re enclosed
in quotation marks ".

You can store anything in a list with Python. Here’s a list of numbers:

primes = [2, 3, 5, 7, 11, 13, 17, 19]






Note

Numbers don’t need to be quoted since they represent a value (rather than a
string of characters). It’s the difference between 2 (the numeric value
2) and "2" (the character/digit representing the number 2). Don’t worry
if this doesn’t make sense right now. You’ll soon get used to it.


  
    

    Buttons
    

    
 
  

    
      
          
            
  
Buttons

So far we have created code that makes the device do something. This is called
output. However, we also need the device to react to things. Such things are
called inputs.

It’s easy to remember: output is what the device puts out to the world
whereas input is what goes into the device for it to process.

The most obvious means of input on the micro:bit are its two buttons, labelled
A and B. Somehow, we need MicroPython to react to button presses.

This is remarkably simple:

from microbit import *

sleep(10000)
display.scroll(str(button_a.get_presses()))





All this script does is sleep for ten thousand milliseconds (i.e. 10 seconds)
and then scrolls the number of times you pressed button A. That’s it!

While it’s a pretty useless script, it introduces a couple of interesting new
ideas:


	The sleep function will make the micro:bit sleep for a certain number
of milliseconds. If you want a pause in your program, this is how to do it.
A function is just like a method, but it isn’t attached by a dot to an
object.


	There is an object called button_a and it allows you to get the number
of times it has been pressed with the get_presses method.




Since get_presses gives a numeric value and display.scroll only
displays characters, we need to convert the numeric value into a string of
characters. We do this with the str function (short for “string” ~ it
converts things into strings of characters).

The third line is a bit like an onion. If the parenthesis are the
onion skins then you’ll notice that display.scroll contains str that
itself contains button_a.get_presses. Python attempts to work out the
inner-most answer first before starting on the next layer out. This is called
nesting - the coding equivalent of a Russian Matrioshka doll.

[image: ../_images/matrioshka.jpg]
Let’s pretend you’ve pressed the button 10 times. Here’s how Python works out
what’s happening on the third line:

Python sees the complete line and gets the value of get_presses:

display.scroll(str(button_a.get_presses()))





Now that Python knows how many button presses there have been, it converts the
numeric value into a string of characters:

display.scroll(str(10))





Finally, Python knows what to scroll across the display:

display.scroll("10")





While this might seem like a lot of work, MicroPython makes this happen
extraordinarily fast.


Event Loops

Often you need your program to hang around waiting for something to happen. To
do this you make it loop around a piece of code that defines how to react to
certain expected events such as a button press.

To make loops in Python you use the while keyword. It checks if something
is True. If it is, it runs a block of code called the body of the loop.
If it isn’t, it breaks out of the loop (ignoring the body) and the rest of the
program can continue.

Python makes it easy to define blocks of code. Say I have a to-do list written
on a piece of paper. It probably looks something like this:

Shopping
Fix broken gutter
Mow the lawn





If I wanted to break down my to-do list a bit further, I might write something
like this:

Shopping:
    Eggs
    Bacon
    Tomatoes
Fix broken gutter:
    Borrow ladder from next door
    Find hammer and nails
    Return ladder
Mow the lawn:
    Check lawn around pond for frogs
    Check mower fuel level





It’s obvious that the main tasks are broken down into sub-tasks that are
indented underneath the main task to which they are related. So Eggs,
Bacon and Tomatoes are obviously related to Shopping. By indenting
things we make it easy to see, at a glance, how the tasks relate to each other.

This is called nesting. We use nesting to define blocks of code like this:

from microbit import *

while running_time() < 10000:
    display.show(Image.ASLEEP)

display.show(Image.SURPRISED)





The running_time function returns the number of milliseconds since the
device started.

The while running_time() < 10000: line checks if the running time is less
than 10000 milliseconds (i.e. 10 seconds). If it is, and this is where we can
see scoping in action, then it’ll display Image.ASLEEP. Notice how this is
indented underneath the while statement just like in our to-do list.

Obviously, if the running time is equal to or greater than 10000 milliseconds
then the display will show Image.SURPRISED. Why? Because the while
condition will be False (running_time is no longer < 10000). In that
case the loop is finished and the program will continue after the while
loop’s block of code. It’ll look like your device is asleep for 10
seconds before waking up with a surprised look on its face.

Try it!



Handling an Event

If we want MicroPython to react to button press events we should put it into
an infinite loop and check if the button is_pressed.

An infinite loop is easy:

while True:
    # Do stuff





(Remember, while checks if something is True to work out if it should
run its block of code. Since True is obviously True for all time, you
get an infinite loop!)

Let’s make a very simple cyber-pet. It’s always sad unless you’re pressing
button A. If you press button B it dies. (I realise this isn’t a very
pleasant game, so perhaps you can figure out how to improve it.):

from microbit import *

while True:
    if button_a.is_pressed():
        display.show(Image.HAPPY)
    elif button_b.is_pressed():
        break
    else:
        display.show(Image.SAD)

display.clear()





Can you see how we check what buttons are pressed? We used if,
elif (short for “else if”) and else. These are called conditionals
and work like this:

if something is True:
    # do one thing
elif some other thing is True:
    # do another thing
else:
    # do yet another thing.





This is remarkably similar to English!

The is_pressed method only produces two results: True or False.
If you’re pressing the button it returns True, otherwise it returns
False. The code above is saying, in English, “for ever and ever, if
button A is pressed then show a happy face, else if button B is pressed break
out of the loop, otherwise display a sad face.” We break out of the loop (stop
the program running for ever and ever) with the break statement.

At the very end, when the cyber-pet is dead, we clear the display.

Can you think of ways to make this game less tragic? How would you check if
both buttons are pressed? (Hint: Python has and, or and not
logical operators to help check multiple truth statements (things that
produce either True or False results).





          

      

      

    

  

  
    

    Input/Output Pins
    

    
 
  

    
      
          
            
  
Input/Output Pins

There are strips of metal along the bottom edge of the BBC micro:bit that make
it look as if the device has teeth. These are the input/output pins (or I/O pins
for short).

[image: ../_images/blue-microbit.png]
Some of the pins are bigger than others so it’s possible to attach crocodile
clips to them. These are the ones labelled 0, 1, 2, 3V and GND (computers
always start counting from zero). If you attach an edge connector board to the
device it’s possible to plug in wires connected to the other (smaller) pins.

In MicroPython, each pin on the BBC micro:bit is represented by an object
called pinN, where N is the number pf the pin.

For example, to use the pin labelled 0 (zero), you can use the object called
pin0 in your script.

These objects have various methods associated with them depending upon what
the specific pin is capable of eg. read, write or touch.


Ticklish Python

The simplest example of input via the pins is a check to see if they are
touched. So, you can tickle your micro:bit to make it laugh like this:

from microbit import *

while True:
    if pin0.is_touched():
        display.show(Image.HAPPY)
    else:
        display.show(Image.SAD)





With one hand, hold your micro:bit by the GND pin. Then, with your other hand,
touch (or tickle) the 0 (zero) pin. You should see the display change from
grumpy to happy!

This is a form of very basic input measurement. However, the fun really starts
when you plug in circuits and other devices via the pins.



Bleeps and Bloops

The simplest thing we can attach to the micro:bit is a Piezo buzzer. There are
two types of piezo buzzers. The simplest type to use are called active buzzers.
Active buzzers contain an oscillator that produces a tone at a predetermined
pitch when a current is passed through them.  Passive buzzers require an
oscillating current to be passed through them to produce a tone at the frequency
of the oscillation.  In short, active buzzers are simple to use but produce only
one tone, while passive buzzers are slightly more complicated to use but can
produce a variety of tones.

[image: piezo buzzer]
We’re going to use an active piezo buzzer for output. To attach one to your BBC
micro:bit you should attach crocodile clips to pin 0 and GND (as shown below).

[image: piezo connected to pin0 and GND]
The wire from pin 0 should be attached to the positive connector on the buzzer
and the wire from GND to the negative connector.

The following program will cause the buzzer to make a sound:

from microbit import *

pin0.write_digital(1)





This is fun for about 5 seconds and then you’ll want to make the horrible
squeaking stop. Let’s improve our example and make the device bleep:

from microbit import *

while True:
    pin0.write_digital(1)
    sleep(20)
    pin0.write_digital(0)
    sleep(480)





Can you work out how this script works? Remember that 1 is “on” and 0
is “off” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This
causes the buzzer to emit a beep. While the buzzer is beeping, the device
sleeps for twenty milliseconds and then switches pin 0 off. This gives the
effect of a short bleep. Finally, the device sleeps for 480 milliseconds before
looping back and starting all over again. This means you’ll get two bleeps per
second (one every 500 milliseconds).

We’ve made a very simple metronome!





          

      

      

    

  

  
    

    Music
    

    
 
  

    
      
          
            
  
Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module.
It’s very easy to generate bleeps and bloops from the device by attaching a
speaker or set of wired headphones.

If you are attaching a speaker, a passive piezo buzzer, or headphones, you can
use crocodile clips to attach pin 0 and GND to the positive and negative inputs.
It doesn’t matter which way round they are connected to a speaker, but a piezo
buzzer may be polarized (check for a “+” marking the positive terminal).

[image: piezo connected to pin0 and GND]

Note

Do not attempt this with an active Piezo buzzer - such buzzers are only
able to play a single tone.


  
    

    Random
    

    
 
  

    
      
          
            
  
Random

Sometimes you want to leave things to chance, or mix it up a little: you want
the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance
and a little chaos into your code. For example, here’s how to scroll a random
name across the display:

from microbit import *
import random

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan" ]

display.scroll(random.choice(names))





The list (names) contains seven names defined as strings of characters.
The final line is nested (the “onion” effect introduced earlier): the
random.choice method takes the names list as an argument and returns
an item chosen at random. This item (the randomly chosen name) is the argument
for display.scroll.

Can you modify the list to include your own set of names?


Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have
dice?

MicroPython comes with several useful random number methods. Here’s how to
make a simple dice:

from microbit import *
import random

display.show(str(random.randint(1, 6)))





Every time the device is reset it displays a number between 1 and 6. You’re
starting to get familiar with nesting, so it’s important to note that
random.randint returns a whole number between the two arguments, inclusive
(a whole number is also called an integer - hence the name of the method).
Notice that because display.show expects a character then we use the
str function to turn the numeric value into a character (we turn, for
example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the
random.randrange method. If you give it a single argument it’ll return
random integers up to, but not including, the value of the argument N
(this is different to the behaviour of random.randint).

Sometimes you need numbers with a decimal point in them. These are called
floating point numbers and it’s possible to generate such a number with the
random.random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results
of random.randrange and random.random like this:

from microbit import *
import random

answer = random.randrange(100) + random.random()
display.scroll(str(answer))







Seeds of Chaos

The random number generators used by computers are not truly random. They just
give random like results given a starting seed value. The seed is often
generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of
randomness that is reproducible. It’s like saying that you need the same five
random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the
random number generator will create the same set of random numbers. The seed is
set with random.seed and any whole number (integer). This version of the
dice program always produces the same results:

from microbit import *
import random

random.seed(1337)
while True:
    if button_a.was_pressed():
        display.show(str(random.randint(1, 6)))





Can you work out why this program needs us to press button A instead of reset
the device as in the first dice example..?





          

      

      

    

  

  
    

    Movement
    

    
 
  

    
      
          
            
  
Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along
three axes:


	X - tilting from left to right.


	Y - tilting forwards and backwards.


	Z - moving up and down.




There is a method for each axis that returns a positive or negative number
indicating a measurement in milli-g’s. When the reading is 0 you are “level”
along that particular axis.

For example, here’s a very simple spirit-level that uses get_x to measure
how level the device is along the X axis:

from microbit import *

while True:
    reading = accelerometer.get_x()
    if reading > 20:
        display.show("R")
    elif reading < -20:
        display.show("L")
    else:
        display.show("-")





If you hold the device flat it should display -; however, rotate it left or
right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an
infinite while loop. The first thing to happen within the body of the
loop is a measurement along the X axis which is called reading. Because
the accelerometer is so sensitive I’ve made level +/-20 in range. It’s why
the if and elif conditionals check for > 20 and < -20. The
else statement means that if the reading is between -20 and 20 then
we consider it level. For each of these conditions we use the display to show
the appropriate character.

There is also a get_y method for the Y axis and a get_z method for the
Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on
its screen, it’s because it uses an accelerometer in exactly the same way as
the program above. Game controllers also contain accelerometers to help you
steer and move around in games.


Musical Mayhem

One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it
lets you easily link different capabilities of the device together. For
example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to
attach pin 0 and GND to the positive and negative inputs on the speaker - it
doesn’t matter which way round they are connected to the speaker.

[image: ../_images/pin0-gnd.png]
What happens if we take the readings from the accelerometer and play them as
pitches? Let’s find out:

from microbit import *
import music

while True:
    music.pitch(accelerometer.get_y(), 10)





The key line is at the end and remarkably simple. We nest the reading from
the Y axis as the frequency to feed into the music.pitch method. We only
let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it
is constantly reacting to changes in the Y axis measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is
positive it’ll change the pitch of the tone played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How
would you improve the program to make the micro:bit sound more musical?





          

      

      

    

  

  
    

    Gestures
    

    
 
  

    
      
          
            
  
Gestures

The really interesting side-effect of having an accelerometer is gesture
detection. If you move your BBC micro:bit in a certain way (as a gesture) then
MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down,
left, right, face up, face down, freefall, 3g, 6g,
8g, shake. Gestures are always represented as strings. While most of
the names should be obvious, the 3g, 6g and 8g gestures apply when
the device encounters these levels of g-force (like when an astronaut is
launched into space).

To get the current gesture use the accelerometer.current_gesture method.
Its result is going to be one of the named gestures listed above. For example,
this program will only make your device happy if it is face up:

from microbit import *

while True:
    gesture = accelerometer.current_gesture()
    if gesture == "face up":
        display.show(Image.HAPPY)
    else:
        display.show(Image.ANGRY)





Once again, because we want the device to react to changing circumstances we
use a while loop. Within the scope of the loop the current gesture is
read and put into gesture. The if conditional checks if gesture is
equal to "face up" (Python uses == to test for equality, a single
equals sign = is used for assignment - just like how we assign the gesture
reading to the gesture object). If the gesture is equal to "face up"
then use the display to show a happy face. Otherwise, the device is made to
look angry!


Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask
it a yes/no question, shake it and wait for it to reveal the truth. It’s rather
easy to turn into a program:

from microbit import *
import random

answers = [
    "It is certain",
    "It is decidedly so",
    "Without a doubt",
    "Yes, definitely",
    "You may rely on it",
    "As I see it, yes",
    "Most likely",
    "Outlook good",
    "Yes",
    "Signs point to yes",
    "Reply hazy try again",
    "Ask again later",
    "Better not tell you now",
    "Cannot predict now",
    "Concentrate and ask again",
    "Don't count on it",
    "My reply is no",
    "My sources say no",
    "Outlook not so good",
    "Very doubtful",
]

while True:
    display.show("8")
    if accelerometer.was_gesture("shake"):
        display.clear()
        sleep(1000)
        display.scroll(random.choice(answers))





Most of the program is a list called answers. The actual game is in the
while loop at the end.

The default state of the game is to show the character "8". However, the
program needs to detect if it has been shaken. The was_gesture method uses
its argument (in this case, the string "shake" because we want to detect
a shake) to return a True / False response. If the device was shaken
the if conditional drops into its block of code where it clears the screen,
waits for a second (so the device appears to be thinking about your question)
and displays a randomly chosen answer.

Why not ask it if this is the greatest program ever written? What could you do
to “cheat” and make the answer always positive or negative? (Hint: use the
buttons.)





          

      

      

    

  

  
    

    Direction
    

    
 
  

    
      
          
            
  
Direction

There is a compass on the BBC micro:bit. If you ever make a weather station
use the device to work out the wind direction.


Compass

It can also tell you the direction of North like this:

from microbit import *

compass.calibrate()

while True:
    needle = ((15 - compass.heading()) // 30) % 12
    display.show(Image.ALL_CLOCKS[needle])






Note

You must calibrate the compass before taking readings. Failure to do so
will produce garbage results. The calibration method runs a fun little
game to help the device work out where it is in relation to the Earth’s
magnetic field.

To calibrate the compass, tilt the micro:bit around until a circle of pixels is
drawn on the outside edges of the display.


  
    

    Storage
    

    
 
  

    
      
          
            
  
Storage

Sometimes you need to store useful information. Such information is stored as
data: representation of information (in a digital form when stored on
computers). If you store data on a computer it should persist, even if you
switch the device off and on again.

Happily MicroPython on the micro:bit allows you to do this with a very simple
file system. Because of memory constraints there is approximately 30k of
storage available on the file system.


Note

The micropython file system should not be confused
with the micro:bit mass storage mode which presents the device as a USB drive.
Mass storage mode is only intended for copying across a HEX file, so you won’t
see files you create using the file system appearing on the MICROBIT drive.


  
    

    Speech
    

    
 
  

    
      
          
            
  
Speech

Computers and robots that talk feel more “human”.

So often we learn about what a computer is up to through a graphical user
interface (GUI). In the case of a BBC micro:bit the GUI is a 5x5 LED matrix,
which leaves a lot to be desired.

Getting the micro:bit talk to you is one way to express information in a fun,
efficient and useful way. To this end, we have integrated a simple speech
synthesiser based upon a reverse-engineered version of a synthesiser from the
early 1980s. It sounds very cute, in an “all humans must die” sort of a way.

With this in mind, we’re going to use the speech synthesiser to create…


DALEK Poetry

[image: ../_images/dalek.jpg]
It’s a little known fact that DALEKs enjoy poetry ~ especially limericks.
They go wild for anapestic meter with a strict AABBA form. Who’d have thought?

(Actually, as we’ll learn below, it’s The Doctor’s fault DALEKs like limericks,
much to the annoyance of Davros.)

In any case, we’re going to create a DALEK poetry recital on demand.



Say Something

Before the device can talk you need to plug in a speaker like this:

[image: ../_images/speech1.png]
The simplest way to get the device to speak is to import the speech module
and use the say function like this:

import speech

speech.say("Hello, World")





While this is cute it’s certainly not DALEK enough for our taste, so we need to
change some of the parameters that the speech synthesiser uses to produce the
voice. Our speech synthesiser is quite powerful in this respect because we can
change four parameters:


	pitch - how high or low the voice sounds (0 = high, 255 = Barry White)


	speed - how quickly the device talks (0 = impossible, 255 = bedtime story)


	mouth - how tight-lipped or overtly enunciating the voice sounds (0 = ventriloquist’s dummy, 255 = Foghorn Leghorn)


	throat - how relaxed or tense is the tone of voice (0 = falling apart, 255 = totally chilled)




Collectively, these parameters control the quality of sound - a.k.a. the
timbre. To be honest, the best way to get the tone of voice you want is to
experiment, use your judgement and adjust.

To adjust the settings you pass them in as arguments to the say function.
More details can be found in the speech module’s API documentation.

After some experimentation we’ve worked out this sounds quite DALEK-esque:

speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)







Poetry on Demand

Being Cyborgs DALEKs use their robot capabilities to compose poetry and it
turns out that the algorithm they use is written in Python like this:

# DALEK poetry generator, by The Doctor
import speech
import random
from microbit import sleep

# Randomly select fragments to interpolate into the template.
location = random.choice(["brent", "trent", "kent", "tashkent"])
action = random.choice(["wrapped up", "covered", "sang to", "played games with"])
obj = random.choice(["head", "hand", "dog", "foot"])
prop = random.choice(["in a tent", "with cement", "with some scent",
                     "that was bent"])
result = random.choice(["it ran off", "it glowed", "it blew up",
                       "it turned blue"])
attitude = random.choice(["in the park", "like a shark", "for a lark",
                         "with a bark"])
conclusion = random.choice(["where it went", "its intent", "why it went",
                           "what it meant"])

# A template of the poem. The {} are replaced by the named fragments.
poem = [
    "there was a young man from {}".format(location),
    "who {} his {} {}".format(action, obj, prop),
    "one night after dark",
    "{} {}".format(result, attitude),
    "and he never worked out {}".format(conclusion),
    "EXTERMINATE",
]

# Loop over each line in the poem and use the speech module to recite it.
for line in poem:
    speech.say(line, speed=120, pitch=100, throat=100, mouth=200)
    sleep(500)





As the comments demonstrate, it’s a very simple in design:


	Named fragments (location, prop, attitude etc) are randomly generated from pre-defined lists of possible values. Note the use of random.choice to select a single item from a list.


	A template of a poem is defined as a list of stanzas with “holes” in them (denoted by {}) into which the named fragments will be put using the format method.


	Finally, Python loops over each item in the list of filled-in poetry stanzas and uses speech.say with the settings for the DALEK voice to recite the poem. A pause of 500 milliseconds is inserted between each line because even DALEKs need to take a breath.




Interestingly the original poetry related routines were written by Davros in
FORTRAN [https://en.wikipedia.org/wiki/Fortran] (an appropriate
language for DALEKS since you type it ALL IN CAPITAL LETTERS). However, The
Doctor went back in time to precisely the point between Davros’s
unit tests [https://en.wikipedia.org/wiki/Unit_testing]
passing and the
deployment pipeline [https://en.wikipedia.org/wiki/Continuous_delivery]
kicking in. At this instant he was able to insert a MicroPython interpreter
into the DALEK operating system and the code you see above into the DALEK
memory banks as a sort of long hidden Time-Lord
Easter Egg [https://en.wikipedia.org/wiki/Easter_egg_(media)] or
Rickroll [https://www.youtube.com/watch?v=dQw4w9WgXcQ].



Phonemes

You’ll notice that sometimes, the say function doesn’t accurately translate
from English words into the correct sound. To have fine grained control of the
output, use phonemes: the building-block sounds of language.

The advantage of using phonemes is that you don’t have to know how to spell!
Rather, you only have to know how to say the word in order to spell it
phonetically.

A full list of the phonemes the speech synthesiser understands can be found in
the API documentation for speech. Alternatively, save yourself a lot of time by
passing in English words to the translate function. It’ll return a first
approximation of the phonemes it would use to generate the audio. This result
can be hand-edited to improve the accuracy, inflection and emphasis (so it
sounds more natural).

The pronounce function is used for phoneme output like this:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.")





How could you improve on The Doctor’s code to make it use phonemes?



Sing A Song of Micro:bit

By changing the pitch setting and calling the sing function it’s
possible to make the device sing (although it’s not going to win Eurovision any
time soon).

The mapping from pitch numbers to musical notes is shown below:

[image: ../_images/speech-pitch1.png]
The sing function must take phonemes and pitch as input like this:

speech.sing("#115DOWWWW")





Notice how the pitch to be sung is prepended to the phoneme with a hash
(#). The pitch will remain the same for subsequent phonemes until a new
pitch is annotated.

The following example demonstrates how all three generative functions (say,
pronounce and sing) can be used to produce speech like output:

"""
    speech.py
    ~~~~~~~~
    Simple speech example to make the micro:bit say, pronounce and sing
    something. This example requires a speaker/buzzer/headphones connected
    to P0 and GND,or the latest micro:bit device with built-in speaker.
"""
import speech
from microbit import sleep

# The say method attempts to convert English into phonemes.
speech.say("I can sing!")
sleep(1000)
speech.say("Listen to me!")
sleep(1000)

# Clearing the throat requires the use of phonemes. Changing
# the pitch and speed also helps create the right effect.
speech.pronounce("AEAE/HAEMM", pitch=200, speed=100)  # Ahem
sleep(1000)

# Singing requires a phoneme with an annotated pitch for each syllable.
solfa = [
    "#115DOWWWWWW",   # Doh
    "#103REYYYYYY",   # Re
    "#94MIYYYYYY",    # Mi
    "#88FAOAOAOAOR",  # Fa
    "#78SOHWWWWW",    # Soh
    "#70LAOAOAOAOR",  # La
    "#62TIYYYYYY",    # Ti
    "#58DOWWWWWW",    # Doh
]

# Sing the scale ascending in pitch.
song = ''.join(solfa)
speech.sing(song, speed=100)
# Reverse the list of syllables.
solfa.reverse()
song = ''.join(solfa)
# Sing the scale descending in pitch.
speech.sing(song, speed=100)









          

      

      

    

  

  
    

    Network
    

    
 
  

    
      
          
            
  
Network

It is possible to connect devices together to send and receive
messages to and from each other. This is called a network. A network of
interconnected networks is called an internet. The Internet is an internet
of all the internets.

Networking is hard and this is reflected in the program described below.
However, the beautiful thing about this project is it contains all the common
aspects of network programming you need to know about. It’s also remarkably
simple and fun.

But first, let’s set the scene…


Connection

Imagine a network as a series of layers. At the very bottom is the most
fundamental aspect of communication: there needs to be some sort of way for
a signal to get from one device to the other. Sometimes this is done via a
radio connection, but in this example we’re simply going to use two wires.

[image: ../_images/network.png]
It is upon this foundation that we can build all the other layers in the
network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile
leads. Both use pin 1 for output and pin 2 for input. The output from one
device is connected to the input on the other. It’s a bit like knowing which
way round to hold a telephone handset - one end has a microphone (the input)
and the other a speaker (the output). The recording of your voice via your
microphone is played out of the other person’s speaker. If you hold the
phone the wrong way up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!



Signal

The next layer in the network stack is the signal. Often this will depend
upon the characteristics of the connection. In our example it’s simply
digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the IO pins like this:

pin1.write_digital(1)  # switch the signal on
pin1.write_digital(0)  # switch the signal off
input = pin2.read_digital()  # read the value of the signal (either 1 or 0)





The next step involves describing how to use and handle a signal. For that we
need a…



Protocol

If you ever meet the Queen there are expectations about how you ought to
behave. For example, when she arrives you may bow or curtsey, if she offers her
hand politely shake it, refer to her as “your majesty” and thereafter as
“ma’am” and so on. This set of rules is called the royal protocol. A protocol
explains how to behave given a specific situation (such as meeting the
Queen). A protocol is pre-defined to ensure everyone understands what’s going
on before a given situation arises.

[image: ../_images/queen.jpg]
It is for this reason that we define and use protocols for communicating
messages via a computer network. Computers need to agree before hand how to
send and receive messages. Perhaps the best known protocol is the
hypertext transfer protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is
Morse code. It defines how to send character-based messages via on/off signals
of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (-) whereas short durations are dots (.).
By combining dashes and dots Morse defines a way to send characters. For
example, here’s how the standard Morse alphabet is defined:

.-    A     .---  J     ...   S     .----  1      ----.  9
-...  B     -.-   K     -     T     ..---  2      -----  0
-.-.  C     .-..  L     ..-   U     ...--  3
-..   D     --    M     ...-  V     ....-  4
.     E     -.    N     .--   W     .....  5
..-.  F     ---   O     -..-  X     -....  6
--.   G     .--.  P     -.--  Y     --...  7
....  H     --.-  Q     --..  Z     ---..  8
..    I     .-.   R





Given the chart above, to send the character “H” the signal is switched on four
times for a short duration, indicating four dots (....). For the letter
“L” the signal is also switched on four times, but the second signal has a
longer duration (.-..).

Obviously, the timing of the signal is important: we need to tell a dot from a
dash. That’s another point of a protocol, to agree such things so everyone’s
implementation of the protocol will work with everyone elses. In this instance
we’ll just say that:


	A signal with a duration less than 250 milliseconds is a dot.


	A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.


	Any other duration of signal is ignored.


	A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.




In this way, the sending of a letter “H” is defined as four “on” signals that
last no longer than 250 milliseconds each, followed by a pause of greater than
500 milliseconds (indicating the end of the character).



Message

We’re finally at a stage where we can build a message - a message that actually
means something to us humans. This is the top-most layer of our network
stack.

Using the protocol defined above I can send the following sequence of signals
down the physical wire to the other micro:bit:

...././.-../.-../---/.--/---/.-./.-../-..





Can you work out what it says?



Application

It’s all very well having a network stack, but you also need a way to
interact with it - some form of application to send and receive messages.
While HTTP is interesting most people don’t know about it and let their
web-browser handle it - the underlying network stack of the world wide web
is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should
it work, from the user’s point of view?

Obviously, to send a message you should be able to input dots and dashes (we
can use button A for that). If we want to see the message we sent or just
received we should be able to trigger it to scroll across the display (we can
use button B for that). Finally, this being Morse code, if a speaker is
attached, we should be able to play the beeps as a form of aural feedback while
the user is entering their message.



The End Result

Here’s the program, in all its glory and annotated with plenty of comments so
you can see what’s going on:

from microbit import *
import music


# A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
    ".-": "A",
    "-...": "B",
    "-.-.": "C",
    "-..": "D",
    ".": "E",
    "..-.": "F",
    "--.": "G",
    "....": "H",
    "..": "I",
    ".---": "J",
    "-.-": "K",
    ".-..": "L",
    "--": "M",
    "-.": "N",
    "---": "O",
    ".--.": "P",
    "--.-": "Q",
    ".-.": "R",
    "...": "S",
    "-": "T",
    "..-": "U",
    "...-": "V",
    ".--": "W",
    "-..-": "X",
    "-.--": "Y",
    "--..": "Z",
    ".----": "1",
    "..---": "2",
    "...--": "3",
    "....-": "4",
    ".....": "5",
    "-....": "6",
    "--...": "7",
    "---..": "8",
    "----.": "9",
    "-----": "0"
}


def decode(buffer):
    # Attempts to get the buffer of Morse code data from the lookup table. If
    # it's not there, just return a full stop.
    return MORSE_CODE_LOOKUP.get(buffer, '.')


# How to display a single dot.
DOT = Image("00000:"
            "00000:"
            "00900:"
            "00000:"
            "00000:")


# How to display a single dash.
DASH = Image("00000:"
             "00000:"
             "09990:"
             "00000:"
             "00000:")


# To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
# To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500


# Holds the incoming Morse signals.
buffer = ''
# Holds the translated Morse as characters.
message = ''
# The time from which the device has been waiting for the next keypress.
started_to_wait = running_time()


# Put the device in a loop to wait for and react to key presses.
while True:
    # Work out how long the device has been waiting for a keypress.
    waiting = running_time() - started_to_wait
    # Reset the timestamp for the key_down_time.
    key_down_time = None
    # If button_a is held down, then...
    while button_a.is_pressed():
        # Play a beep - this is Morse code y'know ;-)
        music.pitch(880, 10)
        # Set pin1 (output) to "on"
        pin1.write_digital(1)
        # ...and if there's not a key_down_time then set it to now!
        if not key_down_time:
            key_down_time = running_time()
    # Alternatively, if pin2 (input) is getting a signal, pretend it's a
    # button_a key press...
    while pin2.read_digital():
        if not key_down_time:
            key_down_time = running_time()
    # Get the current time and call it key_up_time.
    key_up_time = running_time()
    # Set pin1 (output) to "off"
    pin1.write_digital(0)
    # If there's a key_down_time (created when button_a was first pressed
    # down).
    if key_down_time:
        # ... then work out for how long it was pressed.
        duration = key_up_time - key_down_time
        # If the duration is less than the max length for a "dot" press...
        if duration < DOT_THRESHOLD:
            # ... then add a dot to the buffer containing incoming Morse codes
            # and display a dot on the display.
            buffer += '.'
            display.show(DOT)
        # Else, if the duration is less than the max length for a "dash"
        # press... (but longer than that for a DOT ~ handled above)
        elif duration < DASH_THRESHOLD:
            # ... then add a dash to the buffer and display a dash.
            buffer += '-'
            display.show(DASH)
        # Otherwise, any other sort of keypress duration is ignored (this isn't
        # needed, but added for "understandability").
        else:
            pass
        # The button press has been handled, so reset the time from which the
        # device is starting to wait for a  button press.
        started_to_wait = running_time()
    # Otherwise, there hasn't been a button_a press during this cycle of the
    # loop, so check there's not been a pause to indicate an end of the
    # incoming Morse code character. The pause must be longer than a DASH
    # code's duration.
    elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
        # There is a buffer and it's reached the end of a code so...
        # Decode the incoming buffer.
        character = decode(buffer)
        # Reset the buffer to empty.
        buffer = ''
        # Show the decoded character.
        display.show(character)
        # Add the character to the message.
        message += character
    # Finally, if button_b was pressed while all the above was going on...
    if button_b.was_pressed():
        # ... display the message,
        display.scroll(message)
        # then reset it to empty (ready for a new message).
        message = ''





How would you improve it? Can you change the definition of a dot and a dash so
speedy Morse code users can use it? What happens if both devices are sending at
the same time? What might you do to handle this situation?





          

      

      

    

  

  
    

    Radio
    

    
 
  

    
      
          
            
  
Radio

Interaction at a distance feels like magic.

Magic might be useful if you’re an elf, wizard or unicorn, but such things only
exist in stories.

However, there’s something much better than magic: physics!

Wireless interaction is all about physics: radio waves (a type of
electromagnetic radiation, similar to visible light) have some sort of property
(such as their amplitude, phase or pulse width) modulated by a transmitter in
such a way that information can be encoded and, thus, broadcast. When radio
waves encounter an electrical conductor (i.e. an aerial), they cause an
alternating current from which the information in the waves can be extracted
and transformed back into its original form.


Layers upon Layers

If you remember, networks are built in layers.

The most fundamental requirement for a network is some sort of connection that
allows a signal to get from one device to the other. In our networking
tutorial we used wires connected to the I/O pins. Thanks to the radio module we
can do away with wires and use the physics summarised above as the invisible
connection between devices.

The next layer up in the network stack is also different from the example in
the networking tutorial. With the wired example we used digital on and off to
send and read a signal from the pins. With the built-in radio on the
micro:bit the smallest useful part of the signal is a byte.



Bytes

A byte is a unit of information that (usually) consists of eight bits. A bit is
the smallest possible unit of information since it can only be in two states:
on or off.

Bytes work like a sort of abacus: each position in the byte is like a
column in an abacus - they represent an associated number. In an abacus these
are usually thousands, hundreds, tens and units (in UK parlance). In a byte
they are 128, 64, 32, 16, 8, 4, 2 and 1. As bits (on/off
signals) are sent over the air, they are re-combined into bytes by the
recipient.

Have you spotted the pattern? (Hint: base 2.)

By adding the numbers associated with the positions in a byte that are set to
“on” we can represent numbers between 0 and 255. The image below shows how this
works with five bits and counting from zero to 32:

[image: ../_images/binary_count.gif]
If we can agree what each one of the 255 numbers (encoded by a byte) represents ~ such as a character ~ then we can start to send text one character per byte
at a time.

Funnily enough, people have already
thought of this [https://en.wikipedia.org/wiki/ASCII] ~ using bytes to
encode and decode information is commonplace. This approximately corresponds to
the Morse-code “protocol” layer in the wired networking example.

A really great series of child (and teacher) friendly explanations of “all
things bytes” can be found at the
CS unplugged [http://csunplugged.org/binary-numbers/] website.



Addressing

The problem with radio is that you can’t transmit directly to one person.
Anyone with an appropriate aerial can receive the messages you transmit. As a
result it’s important to be able to differentiate who should be receiving
broadcasts.

The way the radio built into the micro:bit solves this problem is quite simple:


	It’s possible to tune the radio to different channels (numbered 0-83). This works in exactly the same way as kids’ walkie-talkie radios: everyone tunes into the same channel and everyone hears what everyone else broadcasts via that channel. As with walkie-talkies, if you use adjacent channels there is a slight possibility of interference.


	The radio module allows you to specify two pieces of information: an address and a group. The address is like a postal address whereas a group is like a specific recipient at the address. The important thing is the radio will filter out messages that it receives that do not match your address and group. As a result, it’s important to pre-arrange the address and group your application is going to use.




Of course, the micro:bit is still receiving broadcast messages for other
address/group combinations. The important thing is you don’t need to worry
about filtering those out. Nevertheless, if someone were clever enough, they
could just read all the wireless network traffic no matter what the target
address/group was supposed to be. In this case, it’s essential to use
encrypted means of communication so only the desired recipient can actually
read the message that was broadcast. Cryptography is a fascinating subject but,
unfortunately, beyond the scope of this tutorial.



Fireflies

This is a firefly:

[image: ../_images/firefly.gif]
It’s a sort of bug that uses bioluminescence to signal (without wires) to its
friends. Here’s what they look like when they signal to each other:

[image: ../_images/fireflies.gif]
The BBC have rather a beautiful video [http://www.bbc.com/earth/story/20160224-worlds-largest-gathering-of-synchronised-fireflies] of fireflies available online.

We’re going to use the radio module to create something akin to a swarm of
fireflies signalling to each other.

First import radio to make the functions available to your Python program.
At this point the radio module is configured to sensible defaults that make
it compatible with other platforms that may target the BBC micro:bit. It is
possible to control many of the features discussed above (such as channel and
addressing) as well as the amount of power used to broadcast messages and the
amount of RAM the incoming message queue will take up. The API documentation
contains all the information you need to configure the radio to your needs.

Assuming we’re happy with the defaults, the simplest way to send a message is
like this:

radio.send("a message")





The example uses the send function to simply broadcast the string
“a message”. To receive a message is even easier:

new_message = radio.receive()





As messages are received they are put on a message queue. The receive
function returns the oldest message from the queue as a string, making space
for a new incoming message. If the message queue fills up, then new incoming
messages are ignored.

That’s really all there is to it! (Although the radio module is also powerful
enough that you can send any arbitrary type of data, not just strings. See the
API documentation for how this works.)

Armed with this knowledge, it’s simple to make micro:bit fireflies like this:

# A micro:bit Firefly.
# By Nicholas H.Tollervey. Released to the public domain.
import radio
import random
from microbit import display, Image, button_a, sleep

# Create the "flash" animation frames. Can you work out how it's done?
flash = [Image().invert()*(i/9) for i in range(9, -1, -1)]

# Event loop.
while True:
    # Button A sends a "flash" message.
    if button_a.was_pressed():
        radio.send('flash')  # a-ha
    # Read any incoming messages.
    incoming = radio.receive()
    if incoming == 'flash':
        # If there's an incoming "flash" message display
        # the firefly flash animation after a random short
        # pause.
        sleep(random.randint(50, 350))
        display.show(flash, delay=100, wait=False)
        # Randomly re-broadcast the flash message after a
        # slight delay.
        if random.randint(0, 9) == 0:
            sleep(500)
            radio.send('flash')  # a-ha





The important stuff happens in the event loop. First, it checks if button A was
pressed and, if it was, uses the radio to send the message “flash”. Then it
reads any messages from the message queue with radio.receive(). If there is
a message it sleeps a short, random period of time (to make the display more
interesting) and uses display.show() to animate a firefly flash. Finally,
to make things a bit exciting, it chooses a random number so that it has a 1 in
10 chance of re-broadcasting the “flash” message to anyone else (this is how
it’s possible to sustain the firefly display among several devices). If it
decides to re-broadcast then it waits for half a second (so the display from
the initial flash message has chance to die down) before sending
the “flash” signal again. Because this code is enclosed within a while True
block, it loops back to the beginning of the event loop and repeats this
process forever.

The end result (using a group of micro:bits) should look something like this:

[image: ../_images/mb-firefly.gif]




          

      

      

    

  

  
    

    Next Steps
    

    
 
  

    
      
          
            
  
Next Steps

These tutorials are only the first steps in using MicroPython with the
BBC micro:bit. A musical analogy: you’ve got a basic understanding of
a very simple instrument and confidently play “Three Blind Mice”.

This is an achievement to build upon.

Ahead of you is an exciting journey to becoming a virtuoso coder.

You will encounter frustration, failure and foolishness. When you do please
remember that you’re not alone. Python has a secret weapon: the most amazing
community of programmers on the planet. Connect with this community and you
will make friends, find mentors, support each other and share resources.

The examples in the tutorials are simple to explain but may not be the simplest
or most efficient implementations. We’ve left out lots of really fun stuff so
we could concentrate on arming you with the basics. If you really want to
know how to make MicroPython fly on the BBC micro:bit then read the API
reference documentation. It contains information about all the capabilities
available to you.

Explore, experiment and be fearless trying things out ~ for these are the
attributes of a virtuoso coder. To encourage you we have hidden a number of
Easter eggs [https://en.wikipedia.org/wiki/Easter_egg_(media)] in MicroPython
and the Python code editors. They’re fun rewards for looking “under the hood” and
“poking with a stick”.

Such skill in Python is valuable: it’s one of the world’s most popular
professional programming languages.

Amaze us with your code! Make things that delight us! Most of all, have fun!

Happy hacking!




          

      

      

    

  

  
    

    Hello, World!
    

    
 
  

    
      
          
            
  
Hello, World!

The traditional way to start programming in a new language is to get your
computer to say, “Hello, World!”.

[image: ../_images/scroll-hello1.gif]
This is easy with MicroPython:

from microbit import *
display.scroll("Hello, World!")





Each line does something special. The first line:

from microbit import *





…tells MicroPython to get all the stuff it needs to work with the BBC
micro:bit. All this stuff is in a module called microbit (a module
is a library of pre-existing code). When you import something you’re telling
MicroPython that you want to use it, and * is Python’s way to say
everything. So, from microbit import * means, in English, “I want to be
able to use everything from the microbit code library”.

The second line:

display.scroll("Hello, World!")





…tells MicroPython to use the display to scroll the string of characters
“Hello, World!”. The display part of that line is an object from the
microbit module that represents the device’s physical display (we say
“object” instead of “thingy”, “whatsit” or “doodah”). We can tell the display
to do things with a full-stop . followed by what looks like a command (in
fact it’s something we call a method). In this case we’re using the
scroll method. Since scroll needs to know what characters to scroll
across the physical display we specify them between double quotes (")
within parenthesis (( and )). These are called the arguments. So,
display.scroll("Hello, World!") means, in English, “I want you to use the
display to scroll the text ‘Hello, World!’”. If a method doesn’t need any
arguments we make this clear by using empty parenthesis like this: ().

Copy the “Hello, World!” code into your editor and flash it onto the device.
Can you work out how to change the message? Can you make it say hello to you?
For example, I might make it say “Hello, Nicholas!”. Here’s a clue, you need to
change the scroll method’s argument.


Warning

It may not work. :-)

This is where things get fun and MicroPython tries to be helpful. If
it encounters an error it will scroll a helpful message on the micro:bit’s
display. If it can, it will tell you the line number for where the error
can be found.

Python expects you to type EXACTLY the right thing. So, for instance,
Microbit, microbit and microBit are all different things to
Python. If MicroPython complains about a NameError it’s probably
because you’ve typed something inaccurately. It’s like the difference
between referring to “Nicholas” and “Nicolas”. They’re two different people
but their names look very similar.

If MicroPython complains about a SyntaxError you’ve simply typed code
in a way that MicroPython can’t understand. Check you’re not missing any
special characters like " or :. It’s like putting. a full stop in
the middle of a sentence. It’s hard to understand exactly what you mean.

Your microbit may stop responding: you cannot flash new code to it or
enter commands into the REPL. If this happens, try power cycling it. That
is, unplug the USB cable (and battery cable if it’s connected), then plug
the cable back in again. You may also need to quit and re-start your code
editor application.


  
    

    Images
    

    
 
  

    
      
          
            
  
Images

MicroPython is about as good at art as you can be if the only thing you have is
a 5x5 grid of red LEDs (light emitting diodes - the things that light up on the
front of the device). MicroPython gives you quite a lot of control over the
display so you can create all sorts of interesting effects.

MicroPython comes with lots of built-in pictures to show on the display.
For example, to make the device appear happy you type:

from microbit import *
display.show(Image.HAPPY)





I suspect you can remember what the first line does. The second line uses the
display object to show a built-in image. The happy image we want to
display is a part of the Image object and called HAPPY. We tell
show to use it by putting it between the parenthesis (( and )).

[image: ../_images/happy.png]
Here’s a list of the built-in images:



	Image.HEART


	Image.HEART_SMALL


	Image.HAPPY


	Image.SMILE


	Image.SAD


	Image.CONFUSED


	Image.ANGRY


	Image.ASLEEP


	Image.SURPRISED


	Image.SILLY


	Image.FABULOUS


	Image.MEH


	Image.YES


	Image.NO


	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1


	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW


	Image.TRIANGLE


	Image.TRIANGLE_LEFT


	Image.CHESSBOARD


	Image.DIAMOND


	Image.DIAMOND_SMALL


	Image.SQUARE


	Image.SQUARE_SMALL


	Image.RABBIT


	Image.COW


	Image.MUSIC_CROTCHET


	Image.MUSIC_QUAVER


	Image.MUSIC_QUAVERS


	Image.PITCHFORK


	Image.XMAS


	Image.PACMAN


	Image.TARGET


	Image.TSHIRT


	Image.ROLLERSKATE


	Image.DUCK


	Image.HOUSE


	Image.TORTOISE


	Image.BUTTERFLY


	Image.STICKFIGURE


	Image.GHOST


	Image.SWORD


	Image.GIRAFFE


	Image.SKULL


	Image.UMBRELLA


	Image.SNAKE


	Image.SCISSORS







There’s quite a lot! Why not modify the code that makes the micro:bit look
happy to see what some of the other built-in images look like? (Just replace
Image.HAPPY with one of the built-in images listed above.)


DIY Images

Of course, you want to make your own image to display on the micro:bit, right?

That’s easy.

Each LED pixel on the physical display can be set to one of ten values. If a
pixel is set to 0 (zero) then it’s off. It literally has zero brightness.
However, if it is set to 9 then it is at its brightest level. The values
1 to 8 represent the brightness levels between off (0) and full on
(9).

Armed with this information, it’s possible to create a new image like this:

from microbit import *

boat = Image("05050:"
             "05050:"
             "05050:"
             "99999:"
             "09990")

display.show(boat)





(When run, the device should display an old-fashioned “Blue Peter” sailing ship
with the masts dimmer than the boat’s hull.)

Have you figured out how to draw a picture? Have you noticed that each line of
the physical display is represented by a line of numbers ending in : and
enclosed between " double quotes? Each number specifies a brightness.
There are five lines of five numbers so it’s possible to specify the individual
brightness for each of the five pixels on each of the five lines on the
physical display. That’s how to create a new image.

Simple!

In fact, you don’t need to write this over several lines. If you think you can
keep track of each line, you can rewrite it like this:

boat = Image("05050:05050:05050:99999:09990")







Animation

Static images are fun, but it’s even more fun to make them move. This is also
amazingly simple to do with MicroPython ~ just use a list of images!

Here is a shopping list:

Eggs
Bacon
Tomatoes





Here’s how you’d represent this list in Python:

shopping = ["Eggs", "Bacon", "Tomatoes" ]





I’ve simply created a list called shopping and it contains three items.
Python knows it’s a list because it’s enclosed in square brackets ([ and
]). Items in the list are separated by a comma (,) and in this instance
the items are three strings of characters: "Eggs", "Bacon" and
"Tomatoes". We know they are strings of characters because they’re enclosed
in quotation marks ".

You can store anything in a list with Python. Here’s a list of numbers:

primes = [2, 3, 5, 7, 11, 13, 17, 19]






Note

Numbers don’t need to be quoted since they represent a value (rather than a
string of characters). It’s the difference between 2 (the numeric value
2) and "2" (the character/digit representing the number 2). Don’t worry
if this doesn’t make sense right now. You’ll soon get used to it.


  
    

    Buttons
    

    
 
  

    
      
          
            
  
Buttons

So far we have created code that makes the device do something. This is called
output. However, we also need the device to react to things. Such things are
called inputs.

It’s easy to remember: output is what the device puts out to the world
whereas input is what goes into the device for it to process.

The most obvious means of input on the micro:bit are its two buttons, labelled
A and B. Somehow, we need MicroPython to react to button presses.

This is remarkably simple:

from microbit import *

sleep(10000)
display.scroll(str(button_a.get_presses()))





All this script does is sleep for ten thousand milliseconds (i.e. 10 seconds)
and then scrolls the number of times you pressed button A. That’s it!

While it’s a pretty useless script, it introduces a couple of interesting new
ideas:


	The sleep function will make the micro:bit sleep for a certain number
of milliseconds. If you want a pause in your program, this is how to do it.
A function is just like a method, but it isn’t attached by a dot to an
object.


	There is an object called button_a and it allows you to get the number
of times it has been pressed with the get_presses method.




Since get_presses gives a numeric value and display.scroll only
displays characters, we need to convert the numeric value into a string of
characters. We do this with the str function (short for “string” ~ it
converts things into strings of characters).

The third line is a bit like an onion. If the parenthesis are the
onion skins then you’ll notice that display.scroll contains str that
itself contains button_a.get_presses. Python attempts to work out the
inner-most answer first before starting on the next layer out. This is called
nesting - the coding equivalent of a Russian Matrioshka doll.

[image: ../_images/matrioshka.jpg]
Let’s pretend you’ve pressed the button 10 times. Here’s how Python works out
what’s happening on the third line:

Python sees the complete line and gets the value of get_presses:

display.scroll(str(button_a.get_presses()))





Now that Python knows how many button presses there have been, it converts the
numeric value into a string of characters:

display.scroll(str(10))





Finally, Python knows what to scroll across the display:

display.scroll("10")





While this might seem like a lot of work, MicroPython makes this happen
extraordinarily fast.


Event Loops

Often you need your program to hang around waiting for something to happen. To
do this you make it loop around a piece of code that defines how to react to
certain expected events such as a button press.

To make loops in Python you use the while keyword. It checks if something
is True. If it is, it runs a block of code called the body of the loop.
If it isn’t, it breaks out of the loop (ignoring the body) and the rest of the
program can continue.

Python makes it easy to define blocks of code. Say I have a to-do list written
on a piece of paper. It probably looks something like this:

Shopping
Fix broken gutter
Mow the lawn





If I wanted to break down my to-do list a bit further, I might write something
like this:

Shopping:
    Eggs
    Bacon
    Tomatoes
Fix broken gutter:
    Borrow ladder from next door
    Find hammer and nails
    Return ladder
Mow the lawn:
    Check lawn around pond for frogs
    Check mower fuel level





It’s obvious that the main tasks are broken down into sub-tasks that are
indented underneath the main task to which they are related. So Eggs,
Bacon and Tomatoes are obviously related to Shopping. By indenting
things we make it easy to see, at a glance, how the tasks relate to each other.

This is called nesting. We use nesting to define blocks of code like this:

from microbit import *

while running_time() < 10000:
    display.show(Image.ASLEEP)

display.show(Image.SURPRISED)





The running_time function returns the number of milliseconds since the
device started.

The while running_time() < 10000: line checks if the running time is less
than 10000 milliseconds (i.e. 10 seconds). If it is, and this is where we can
see scoping in action, then it’ll display Image.ASLEEP. Notice how this is
indented underneath the while statement just like in our to-do list.

Obviously, if the running time is equal to or greater than 10000 milliseconds
then the display will show Image.SURPRISED. Why? Because the while
condition will be False (running_time is no longer < 10000). In that
case the loop is finished and the program will continue after the while
loop’s block of code. It’ll look like your device is asleep for 10
seconds before waking up with a surprised look on its face.

Try it!



Handling an Event

If we want MicroPython to react to button press events we should put it into
an infinite loop and check if the button is_pressed.

An infinite loop is easy:

while True:
    # Do stuff





(Remember, while checks if something is True to work out if it should
run its block of code. Since True is obviously True for all time, you
get an infinite loop!)

Let’s make a very simple cyber-pet. It’s always sad unless you’re pressing
button A. If you press button B it dies. (I realise this isn’t a very
pleasant game, so perhaps you can figure out how to improve it.):

from microbit import *

while True:
    if button_a.is_pressed():
        display.show(Image.HAPPY)
    elif button_b.is_pressed():
        break
    else:
        display.show(Image.SAD)

display.clear()





Can you see how we check what buttons are pressed? We used if,
elif (short for “else if”) and else. These are called conditionals
and work like this:

if something is True:
    # do one thing
elif some other thing is True:
    # do another thing
else:
    # do yet another thing.





This is remarkably similar to English!

The is_pressed method only produces two results: True or False.
If you’re pressing the button it returns True, otherwise it returns
False. The code above is saying, in English, “for ever and ever, if
button A is pressed then show a happy face, else if button B is pressed break
out of the loop, otherwise display a sad face.” We break out of the loop (stop
the program running for ever and ever) with the break statement.

At the very end, when the cyber-pet is dead, we clear the display.

Can you think of ways to make this game less tragic? How would you check if
both buttons are pressed? (Hint: Python has and, or and not
logical operators to help check multiple truth statements (things that
produce either True or False results).





          

      

      

    

  

  
    

    Input/Output Pins
    

    
 
  

    
      
          
            
  
Input/Output Pins

There are strips of metal along the bottom edge of the BBC micro:bit that make
it look as if the device has teeth. These are the input/output pins (or I/O pins
for short).

[image: ../_images/blue-microbit.png]
Some of the pins are bigger than others so it’s possible to attach crocodile
clips to them. These are the ones labelled 0, 1, 2, 3V and GND (computers
always start counting from zero). If you attach an edge connector board to the
device it’s possible to plug in wires connected to the other (smaller) pins.

In MicroPython, each pin on the BBC micro:bit is represented by an object
called pinN, where N is the number pf the pin.

For example, to use the pin labelled 0 (zero), you can use the object called
pin0 in your script.

These objects have various methods associated with them depending upon what
the specific pin is capable of eg. read, write or touch.


Ticklish Python

The simplest example of input via the pins is a check to see if they are
touched. So, you can tickle your micro:bit to make it laugh like this:

from microbit import *

while True:
    if pin0.is_touched():
        display.show(Image.HAPPY)
    else:
        display.show(Image.SAD)





With one hand, hold your micro:bit by the GND pin. Then, with your other hand,
touch (or tickle) the 0 (zero) pin. You should see the display change from
grumpy to happy!

This is a form of very basic input measurement. However, the fun really starts
when you plug in circuits and other devices via the pins.



Bleeps and Bloops

The simplest thing we can attach to the micro:bit is a Piezo buzzer. There are
two types of piezo buzzers. The simplest type to use are called active buzzers.
Active buzzers contain an oscillator that produces a tone at a predetermined
pitch when a current is passed through them.  Passive buzzers require an
oscillating current to be passed through them to produce a tone at the frequency
of the oscillation.  In short, active buzzers are simple to use but produce only
one tone, while passive buzzers are slightly more complicated to use but can
produce a variety of tones.

[image: piezo buzzer]
We’re going to use an active piezo buzzer for output. To attach one to your BBC
micro:bit you should attach crocodile clips to pin 0 and GND (as shown below).

[image: piezo connected to pin0 and GND]
The wire from pin 0 should be attached to the positive connector on the buzzer
and the wire from GND to the negative connector.

The following program will cause the buzzer to make a sound:

from microbit import *

pin0.write_digital(1)





This is fun for about 5 seconds and then you’ll want to make the horrible
squeaking stop. Let’s improve our example and make the device bleep:

from microbit import *

while True:
    pin0.write_digital(1)
    sleep(20)
    pin0.write_digital(0)
    sleep(480)





Can you work out how this script works? Remember that 1 is “on” and 0
is “off” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This
causes the buzzer to emit a beep. While the buzzer is beeping, the device
sleeps for twenty milliseconds and then switches pin 0 off. This gives the
effect of a short bleep. Finally, the device sleeps for 480 milliseconds before
looping back and starting all over again. This means you’ll get two bleeps per
second (one every 500 milliseconds).

We’ve made a very simple metronome!





          

      

      

    

  

  
    

    Music
    

    
 
  

    
      
          
            
  
Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module.
It’s very easy to generate bleeps and bloops from the device by attaching a
speaker or set of wired headphones.

If you are attaching a speaker, a passive piezo buzzer, or headphones, you can
use crocodile clips to attach pin 0 and GND to the positive and negative inputs.
It doesn’t matter which way round they are connected to a speaker, but a piezo
buzzer may be polarized (check for a “+” marking the positive terminal).

[image: piezo connected to pin0 and GND]

Note

Do not attempt this with an active Piezo buzzer - such buzzers are only
able to play a single tone.


  
    

    Random
    

    
 
  

    
      
          
            
  
Random

Sometimes you want to leave things to chance, or mix it up a little: you want
the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance
and a little chaos into your code. For example, here’s how to scroll a random
name across the display:

from microbit import *
import random

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan" ]

display.scroll(random.choice(names))





The list (names) contains seven names defined as strings of characters.
The final line is nested (the “onion” effect introduced earlier): the
random.choice method takes the names list as an argument and returns
an item chosen at random. This item (the randomly chosen name) is the argument
for display.scroll.

Can you modify the list to include your own set of names?


Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have
dice?

MicroPython comes with several useful random number methods. Here’s how to
make a simple dice:

from microbit import *
import random

display.show(str(random.randint(1, 6)))





Every time the device is reset it displays a number between 1 and 6. You’re
starting to get familiar with nesting, so it’s important to note that
random.randint returns a whole number between the two arguments, inclusive
(a whole number is also called an integer - hence the name of the method).
Notice that because display.show expects a character then we use the
str function to turn the numeric value into a character (we turn, for
example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the
random.randrange method. If you give it a single argument it’ll return
random integers up to, but not including, the value of the argument N
(this is different to the behaviour of random.randint).

Sometimes you need numbers with a decimal point in them. These are called
floating point numbers and it’s possible to generate such a number with the
random.random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results
of random.randrange and random.random like this:

from microbit import *
import random

answer = random.randrange(100) + random.random()
display.scroll(str(answer))







Seeds of Chaos

The random number generators used by computers are not truly random. They just
give random like results given a starting seed value. The seed is often
generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of
randomness that is reproducible. It’s like saying that you need the same five
random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the
random number generator will create the same set of random numbers. The seed is
set with random.seed and any whole number (integer). This version of the
dice program always produces the same results:

from microbit import *
import random

random.seed(1337)
while True:
    if button_a.was_pressed():
        display.show(str(random.randint(1, 6)))





Can you work out why this program needs us to press button A instead of reset
the device as in the first dice example..?





          

      

      

    

  

  
    

    Movement
    

    
 
  

    
      
          
            
  
Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along
three axes:


	X - tilting from left to right.


	Y - tilting forwards and backwards.


	Z - moving up and down.




There is a method for each axis that returns a positive or negative number
indicating a measurement in milli-g’s. When the reading is 0 you are “level”
along that particular axis.

For example, here’s a very simple spirit-level that uses get_x to measure
how level the device is along the X axis:

from microbit import *

while True:
    reading = accelerometer.get_x()
    if reading > 20:
        display.show("R")
    elif reading < -20:
        display.show("L")
    else:
        display.show("-")





If you hold the device flat it should display -; however, rotate it left or
right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an
infinite while loop. The first thing to happen within the body of the
loop is a measurement along the X axis which is called reading. Because
the accelerometer is so sensitive I’ve made level +/-20 in range. It’s why
the if and elif conditionals check for > 20 and < -20. The
else statement means that if the reading is between -20 and 20 then
we consider it level. For each of these conditions we use the display to show
the appropriate character.

There is also a get_y method for the Y axis and a get_z method for the
Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on
its screen, it’s because it uses an accelerometer in exactly the same way as
the program above. Game controllers also contain accelerometers to help you
steer and move around in games.


Musical Mayhem

One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it
lets you easily link different capabilities of the device together. For
example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to
attach pin 0 and GND to the positive and negative inputs on the speaker - it
doesn’t matter which way round they are connected to the speaker.

[image: ../_images/pin0-gnd.png]
What happens if we take the readings from the accelerometer and play them as
pitches? Let’s find out:

from microbit import *
import music

while True:
    music.pitch(accelerometer.get_y(), 10)





The key line is at the end and remarkably simple. We nest the reading from
the Y axis as the frequency to feed into the music.pitch method. We only
let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it
is constantly reacting to changes in the Y axis measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is
positive it’ll change the pitch of the tone played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How
would you improve the program to make the micro:bit sound more musical?





          

      

      

    

  

  
    

    Gestures
    

    
 
  

    
      
          
            
  
Gestures

The really interesting side-effect of having an accelerometer is gesture
detection. If you move your BBC micro:bit in a certain way (as a gesture) then
MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down,
left, right, face up, face down, freefall, 3g, 6g,
8g, shake. Gestures are always represented as strings. While most of
the names should be obvious, the 3g, 6g and 8g gestures apply when
the device encounters these levels of g-force (like when an astronaut is
launched into space).

To get the current gesture use the accelerometer.current_gesture method.
Its result is going to be one of the named gestures listed above. For example,
this program will only make your device happy if it is face up:

from microbit import *

while True:
    gesture = accelerometer.current_gesture()
    if gesture == "face up":
        display.show(Image.HAPPY)
    else:
        display.show(Image.ANGRY)





Once again, because we want the device to react to changing circumstances we
use a while loop. Within the scope of the loop the current gesture is
read and put into gesture. The if conditional checks if gesture is
equal to "face up" (Python uses == to test for equality, a single
equals sign = is used for assignment - just like how we assign the gesture
reading to the gesture object). If the gesture is equal to "face up"
then use the display to show a happy face. Otherwise, the device is made to
look angry!


Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask
it a yes/no question, shake it and wait for it to reveal the truth. It’s rather
easy to turn into a program:

from microbit import *
import random

answers = [
    "It is certain",
    "It is decidedly so",
    "Without a doubt",
    "Yes, definitely",
    "You may rely on it",
    "As I see it, yes",
    "Most likely",
    "Outlook good",
    "Yes",
    "Signs point to yes",
    "Reply hazy try again",
    "Ask again later",
    "Better not tell you now",
    "Cannot predict now",
    "Concentrate and ask again",
    "Don't count on it",
    "My reply is no",
    "My sources say no",
    "Outlook not so good",
    "Very doubtful",
]

while True:
    display.show("8")
    if accelerometer.was_gesture("shake"):
        display.clear()
        sleep(1000)
        display.scroll(random.choice(answers))





Most of the program is a list called answers. The actual game is in the
while loop at the end.

The default state of the game is to show the character "8". However, the
program needs to detect if it has been shaken. The was_gesture method uses
its argument (in this case, the string "shake" because we want to detect
a shake) to return a True / False response. If the device was shaken
the if conditional drops into its block of code where it clears the screen,
waits for a second (so the device appears to be thinking about your question)
and displays a randomly chosen answer.

Why not ask it if this is the greatest program ever written? What could you do
to “cheat” and make the answer always positive or negative? (Hint: use the
buttons.)





          

      

      

    

  

  
    

    Direction
    

    
 
  

    
      
          
            
  
Direction

There is a compass on the BBC micro:bit. If you ever make a weather station
use the device to work out the wind direction.


Compass

It can also tell you the direction of North like this:

from microbit import *

compass.calibrate()

while True:
    needle = ((15 - compass.heading()) // 30) % 12
    display.show(Image.ALL_CLOCKS[needle])






Note

You must calibrate the compass before taking readings. Failure to do so
will produce garbage results. The calibration method runs a fun little
game to help the device work out where it is in relation to the Earth’s
magnetic field.

To calibrate the compass, tilt the micro:bit around until a circle of pixels is
drawn on the outside edges of the display.


  
    

    Storage
    

    
 
  

    
      
          
            
  
Storage

Sometimes you need to store useful information. Such information is stored as
data: representation of information (in a digital form when stored on
computers). If you store data on a computer it should persist, even if you
switch the device off and on again.

Happily MicroPython on the micro:bit allows you to do this with a very simple
file system. Because of memory constraints there is approximately 30k of
storage available on the file system.


Note

The micropython file system should not be confused
with the micro:bit mass storage mode which presents the device as a USB drive.
Mass storage mode is only intended for copying across a HEX file, so you won’t
see files you create using the file system appearing on the MICROBIT drive.


  
    

    Speech
    

    
 
  

    
      
          
            
  
Speech

Computers and robots that talk feel more “human”.

So often we learn about what a computer is up to through a graphical user
interface (GUI). In the case of a BBC micro:bit the GUI is a 5x5 LED matrix,
which leaves a lot to be desired.

Getting the micro:bit talk to you is one way to express information in a fun,
efficient and useful way. To this end, we have integrated a simple speech
synthesiser based upon a reverse-engineered version of a synthesiser from the
early 1980s. It sounds very cute, in an “all humans must die” sort of a way.

With this in mind, we’re going to use the speech synthesiser to create…


DALEK Poetry

[image: ../_images/dalek.jpg]
It’s a little known fact that DALEKs enjoy poetry ~ especially limericks.
They go wild for anapestic meter with a strict AABBA form. Who’d have thought?

(Actually, as we’ll learn below, it’s The Doctor’s fault DALEKs like limericks,
much to the annoyance of Davros.)

In any case, we’re going to create a DALEK poetry recital on demand.



Say Something

Before the device can talk you need to plug in a speaker like this:

[image: ../_images/speech1.png]
The simplest way to get the device to speak is to import the speech module
and use the say function like this:

import speech

speech.say("Hello, World")





While this is cute it’s certainly not DALEK enough for our taste, so we need to
change some of the parameters that the speech synthesiser uses to produce the
voice. Our speech synthesiser is quite powerful in this respect because we can
change four parameters:


	pitch - how high or low the voice sounds (0 = high, 255 = Barry White)


	speed - how quickly the device talks (0 = impossible, 255 = bedtime story)


	mouth - how tight-lipped or overtly enunciating the voice sounds (0 = ventriloquist’s dummy, 255 = Foghorn Leghorn)


	throat - how relaxed or tense is the tone of voice (0 = falling apart, 255 = totally chilled)




Collectively, these parameters control the quality of sound - a.k.a. the
timbre. To be honest, the best way to get the tone of voice you want is to
experiment, use your judgement and adjust.

To adjust the settings you pass them in as arguments to the say function.
More details can be found in the speech module’s API documentation.

After some experimentation we’ve worked out this sounds quite DALEK-esque:

speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)







Poetry on Demand

Being Cyborgs DALEKs use their robot capabilities to compose poetry and it
turns out that the algorithm they use is written in Python like this:

# DALEK poetry generator, by The Doctor
import speech
import random
from microbit import sleep

# Randomly select fragments to interpolate into the template.
location = random.choice(["brent", "trent", "kent", "tashkent"])
action = random.choice(["wrapped up", "covered", "sang to", "played games with"])
obj = random.choice(["head", "hand", "dog", "foot"])
prop = random.choice(["in a tent", "with cement", "with some scent",
                     "that was bent"])
result = random.choice(["it ran off", "it glowed", "it blew up",
                       "it turned blue"])
attitude = random.choice(["in the park", "like a shark", "for a lark",
                         "with a bark"])
conclusion = random.choice(["where it went", "its intent", "why it went",
                           "what it meant"])

# A template of the poem. The {} are replaced by the named fragments.
poem = [
    "there was a young man from {}".format(location),
    "who {} his {} {}".format(action, obj, prop),
    "one night after dark",
    "{} {}".format(result, attitude),
    "and he never worked out {}".format(conclusion),
    "EXTERMINATE",
]

# Loop over each line in the poem and use the speech module to recite it.
for line in poem:
    speech.say(line, speed=120, pitch=100, throat=100, mouth=200)
    sleep(500)





As the comments demonstrate, it’s a very simple in design:


	Named fragments (location, prop, attitude etc) are randomly generated from pre-defined lists of possible values. Note the use of random.choice to select a single item from a list.


	A template of a poem is defined as a list of stanzas with “holes” in them (denoted by {}) into which the named fragments will be put using the format method.


	Finally, Python loops over each item in the list of filled-in poetry stanzas and uses speech.say with the settings for the DALEK voice to recite the poem. A pause of 500 milliseconds is inserted between each line because even DALEKs need to take a breath.




Interestingly the original poetry related routines were written by Davros in
FORTRAN [https://en.wikipedia.org/wiki/Fortran] (an appropriate
language for DALEKS since you type it ALL IN CAPITAL LETTERS). However, The
Doctor went back in time to precisely the point between Davros’s
unit tests [https://en.wikipedia.org/wiki/Unit_testing]
passing and the
deployment pipeline [https://en.wikipedia.org/wiki/Continuous_delivery]
kicking in. At this instant he was able to insert a MicroPython interpreter
into the DALEK operating system and the code you see above into the DALEK
memory banks as a sort of long hidden Time-Lord
Easter Egg [https://en.wikipedia.org/wiki/Easter_egg_(media)] or
Rickroll [https://www.youtube.com/watch?v=dQw4w9WgXcQ].



Phonemes

You’ll notice that sometimes, the say function doesn’t accurately translate
from English words into the correct sound. To have fine grained control of the
output, use phonemes: the building-block sounds of language.

The advantage of using phonemes is that you don’t have to know how to spell!
Rather, you only have to know how to say the word in order to spell it
phonetically.

A full list of the phonemes the speech synthesiser understands can be found in
the API documentation for speech. Alternatively, save yourself a lot of time by
passing in English words to the translate function. It’ll return a first
approximation of the phonemes it would use to generate the audio. This result
can be hand-edited to improve the accuracy, inflection and emphasis (so it
sounds more natural).

The pronounce function is used for phoneme output like this:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.")





How could you improve on The Doctor’s code to make it use phonemes?



Sing A Song of Micro:bit

By changing the pitch setting and calling the sing function it’s
possible to make the device sing (although it’s not going to win Eurovision any
time soon).

The mapping from pitch numbers to musical notes is shown below:

[image: ../_images/speech-pitch1.png]
The sing function must take phonemes and pitch as input like this:

speech.sing("#115DOWWWW")





Notice how the pitch to be sung is prepended to the phoneme with a hash
(#). The pitch will remain the same for subsequent phonemes until a new
pitch is annotated.

The following example demonstrates how all three generative functions (say,
pronounce and sing) can be used to produce speech like output:

"""
    speech.py
    ~~~~~~~~
    Simple speech example to make the micro:bit say, pronounce and sing
    something. This example requires a speaker/buzzer/headphones connected
    to P0 and GND,or the latest micro:bit device with built-in speaker.
"""
import speech
from microbit import sleep

# The say method attempts to convert English into phonemes.
speech.say("I can sing!")
sleep(1000)
speech.say("Listen to me!")
sleep(1000)

# Clearing the throat requires the use of phonemes. Changing
# the pitch and speed also helps create the right effect.
speech.pronounce("AEAE/HAEMM", pitch=200, speed=100)  # Ahem
sleep(1000)

# Singing requires a phoneme with an annotated pitch for each syllable.
solfa = [
    "#115DOWWWWWW",   # Doh
    "#103REYYYYYY",   # Re
    "#94MIYYYYYY",    # Mi
    "#88FAOAOAOAOR",  # Fa
    "#78SOHWWWWW",    # Soh
    "#70LAOAOAOAOR",  # La
    "#62TIYYYYYY",    # Ti
    "#58DOWWWWWW",    # Doh
]

# Sing the scale ascending in pitch.
song = ''.join(solfa)
speech.sing(song, speed=100)
# Reverse the list of syllables.
solfa.reverse()
song = ''.join(solfa)
# Sing the scale descending in pitch.
speech.sing(song, speed=100)









          

      

      

    

  

  
    

    Network
    

    
 
  

    
      
          
            
  
Network

It is possible to connect devices together to send and receive
messages to and from each other. This is called a network. A network of
interconnected networks is called an internet. The Internet is an internet
of all the internets.

Networking is hard and this is reflected in the program described below.
However, the beautiful thing about this project is it contains all the common
aspects of network programming you need to know about. It’s also remarkably
simple and fun.

But first, let’s set the scene…


Connection

Imagine a network as a series of layers. At the very bottom is the most
fundamental aspect of communication: there needs to be some sort of way for
a signal to get from one device to the other. Sometimes this is done via a
radio connection, but in this example we’re simply going to use two wires.

[image: ../_images/network.png]
It is upon this foundation that we can build all the other layers in the
network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile
leads. Both use pin 1 for output and pin 2 for input. The output from one
device is connected to the input on the other. It’s a bit like knowing which
way round to hold a telephone handset - one end has a microphone (the input)
and the other a speaker (the output). The recording of your voice via your
microphone is played out of the other person’s speaker. If you hold the
phone the wrong way up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!



Signal

The next layer in the network stack is the signal. Often this will depend
upon the characteristics of the connection. In our example it’s simply
digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the IO pins like this:

pin1.write_digital(1)  # switch the signal on
pin1.write_digital(0)  # switch the signal off
input = pin2.read_digital()  # read the value of the signal (either 1 or 0)





The next step involves describing how to use and handle a signal. For that we
need a…



Protocol

If you ever meet the Queen there are expectations about how you ought to
behave. For example, when she arrives you may bow or curtsey, if she offers her
hand politely shake it, refer to her as “your majesty” and thereafter as
“ma’am” and so on. This set of rules is called the royal protocol. A protocol
explains how to behave given a specific situation (such as meeting the
Queen). A protocol is pre-defined to ensure everyone understands what’s going
on before a given situation arises.

[image: ../_images/queen.jpg]
It is for this reason that we define and use protocols for communicating
messages via a computer network. Computers need to agree before hand how to
send and receive messages. Perhaps the best known protocol is the
hypertext transfer protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is
Morse code. It defines how to send character-based messages via on/off signals
of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (-) whereas short durations are dots (.).
By combining dashes and dots Morse defines a way to send characters. For
example, here’s how the standard Morse alphabet is defined:

.-    A     .---  J     ...   S     .----  1      ----.  9
-...  B     -.-   K     -     T     ..---  2      -----  0
-.-.  C     .-..  L     ..-   U     ...--  3
-..   D     --    M     ...-  V     ....-  4
.     E     -.    N     .--   W     .....  5
..-.  F     ---   O     -..-  X     -....  6
--.   G     .--.  P     -.--  Y     --...  7
....  H     --.-  Q     --..  Z     ---..  8
..    I     .-.   R





Given the chart above, to send the character “H” the signal is switched on four
times for a short duration, indicating four dots (....). For the letter
“L” the signal is also switched on four times, but the second signal has a
longer duration (.-..).

Obviously, the timing of the signal is important: we need to tell a dot from a
dash. That’s another point of a protocol, to agree such things so everyone’s
implementation of the protocol will work with everyone elses. In this instance
we’ll just say that:


	A signal with a duration less than 250 milliseconds is a dot.


	A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.


	Any other duration of signal is ignored.


	A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.




In this way, the sending of a letter “H” is defined as four “on” signals that
last no longer than 250 milliseconds each, followed by a pause of greater than
500 milliseconds (indicating the end of the character).



Message

We’re finally at a stage where we can build a message - a message that actually
means something to us humans. This is the top-most layer of our network
stack.

Using the protocol defined above I can send the following sequence of signals
down the physical wire to the other micro:bit:

...././.-../.-../---/.--/---/.-./.-../-..





Can you work out what it says?



Application

It’s all very well having a network stack, but you also need a way to
interact with it - some form of application to send and receive messages.
While HTTP is interesting most people don’t know about it and let their
web-browser handle it - the underlying network stack of the world wide web
is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should
it work, from the user’s point of view?

Obviously, to send a message you should be able to input dots and dashes (we
can use button A for that). If we want to see the message we sent or just
received we should be able to trigger it to scroll across the display (we can
use button B for that). Finally, this being Morse code, if a speaker is
attached, we should be able to play the beeps as a form of aural feedback while
the user is entering their message.



The End Result

Here’s the program, in all its glory and annotated with plenty of comments so
you can see what’s going on:

from microbit import *
import music


# A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
    ".-": "A",
    "-...": "B",
    "-.-.": "C",
    "-..": "D",
    ".": "E",
    "..-.": "F",
    "--.": "G",
    "....": "H",
    "..": "I",
    ".---": "J",
    "-.-": "K",
    ".-..": "L",
    "--": "M",
    "-.": "N",
    "---": "O",
    ".--.": "P",
    "--.-": "Q",
    ".-.": "R",
    "...": "S",
    "-": "T",
    "..-": "U",
    "...-": "V",
    ".--": "W",
    "-..-": "X",
    "-.--": "Y",
    "--..": "Z",
    ".----": "1",
    "..---": "2",
    "...--": "3",
    "....-": "4",
    ".....": "5",
    "-....": "6",
    "--...": "7",
    "---..": "8",
    "----.": "9",
    "-----": "0"
}


def decode(buffer):
    # Attempts to get the buffer of Morse code data from the lookup table. If
    # it's not there, just return a full stop.
    return MORSE_CODE_LOOKUP.get(buffer, '.')


# How to display a single dot.
DOT = Image("00000:"
            "00000:"
            "00900:"
            "00000:"
            "00000:")


# How to display a single dash.
DASH = Image("00000:"
             "00000:"
             "09990:"
             "00000:"
             "00000:")


# To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
# To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500


# Holds the incoming Morse signals.
buffer = ''
# Holds the translated Morse as characters.
message = ''
# The time from which the device has been waiting for the next keypress.
started_to_wait = running_time()


# Put the device in a loop to wait for and react to key presses.
while True:
    # Work out how long the device has been waiting for a keypress.
    waiting = running_time() - started_to_wait
    # Reset the timestamp for the key_down_time.
    key_down_time = None
    # If button_a is held down, then...
    while button_a.is_pressed():
        # Play a beep - this is Morse code y'know ;-)
        music.pitch(880, 10)
        # Set pin1 (output) to "on"
        pin1.write_digital(1)
        # ...and if there's not a key_down_time then set it to now!
        if not key_down_time:
            key_down_time = running_time()
    # Alternatively, if pin2 (input) is getting a signal, pretend it's a
    # button_a key press...
    while pin2.read_digital():
        if not key_down_time:
            key_down_time = running_time()
    # Get the current time and call it key_up_time.
    key_up_time = running_time()
    # Set pin1 (output) to "off"
    pin1.write_digital(0)
    # If there's a key_down_time (created when button_a was first pressed
    # down).
    if key_down_time:
        # ... then work out for how long it was pressed.
        duration = key_up_time - key_down_time
        # If the duration is less than the max length for a "dot" press...
        if duration < DOT_THRESHOLD:
            # ... then add a dot to the buffer containing incoming Morse codes
            # and display a dot on the display.
            buffer += '.'
            display.show(DOT)
        # Else, if the duration is less than the max length for a "dash"
        # press... (but longer than that for a DOT ~ handled above)
        elif duration < DASH_THRESHOLD:
            # ... then add a dash to the buffer and display a dash.
            buffer += '-'
            display.show(DASH)
        # Otherwise, any other sort of keypress duration is ignored (this isn't
        # needed, but added for "understandability").
        else:
            pass
        # The button press has been handled, so reset the time from which the
        # device is starting to wait for a  button press.
        started_to_wait = running_time()
    # Otherwise, there hasn't been a button_a press during this cycle of the
    # loop, so check there's not been a pause to indicate an end of the
    # incoming Morse code character. The pause must be longer than a DASH
    # code's duration.
    elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
        # There is a buffer and it's reached the end of a code so...
        # Decode the incoming buffer.
        character = decode(buffer)
        # Reset the buffer to empty.
        buffer = ''
        # Show the decoded character.
        display.show(character)
        # Add the character to the message.
        message += character
    # Finally, if button_b was pressed while all the above was going on...
    if button_b.was_pressed():
        # ... display the message,
        display.scroll(message)
        # then reset it to empty (ready for a new message).
        message = ''





How would you improve it? Can you change the definition of a dot and a dash so
speedy Morse code users can use it? What happens if both devices are sending at
the same time? What might you do to handle this situation?





          

      

      

    

  

  
    

    Radio
    

    
 
  

    
      
          
            
  
Radio

Interaction at a distance feels like magic.

Magic might be useful if you’re an elf, wizard or unicorn, but such things only
exist in stories.

However, there’s something much better than magic: physics!

Wireless interaction is all about physics: radio waves (a type of
electromagnetic radiation, similar to visible light) have some sort of property
(such as their amplitude, phase or pulse width) modulated by a transmitter in
such a way that information can be encoded and, thus, broadcast. When radio
waves encounter an electrical conductor (i.e. an aerial), they cause an
alternating current from which the information in the waves can be extracted
and transformed back into its original form.


Layers upon Layers

If you remember, networks are built in layers.

The most fundamental requirement for a network is some sort of connection that
allows a signal to get from one device to the other. In our networking
tutorial we used wires connected to the I/O pins. Thanks to the radio module we
can do away with wires and use the physics summarised above as the invisible
connection between devices.

The next layer up in the network stack is also different from the example in
the networking tutorial. With the wired example we used digital on and off to
send and read a signal from the pins. With the built-in radio on the
micro:bit the smallest useful part of the signal is a byte.



Bytes

A byte is a unit of information that (usually) consists of eight bits. A bit is
the smallest possible unit of information since it can only be in two states:
on or off.

Bytes work like a sort of abacus: each position in the byte is like a
column in an abacus - they represent an associated number. In an abacus these
are usually thousands, hundreds, tens and units (in UK parlance). In a byte
they are 128, 64, 32, 16, 8, 4, 2 and 1. As bits (on/off
signals) are sent over the air, they are re-combined into bytes by the
recipient.

Have you spotted the pattern? (Hint: base 2.)

By adding the numbers associated with the positions in a byte that are set to
“on” we can represent numbers between 0 and 255. The image below shows how this
works with five bits and counting from zero to 32:

[image: ../_images/binary_count.gif]
If we can agree what each one of the 255 numbers (encoded by a byte) represents ~ such as a character ~ then we can start to send text one character per byte
at a time.

Funnily enough, people have already
thought of this [https://en.wikipedia.org/wiki/ASCII] ~ using bytes to
encode and decode information is commonplace. This approximately corresponds to
the Morse-code “protocol” layer in the wired networking example.

A really great series of child (and teacher) friendly explanations of “all
things bytes” can be found at the
CS unplugged [http://csunplugged.org/binary-numbers/] website.



Addressing

The problem with radio is that you can’t transmit directly to one person.
Anyone with an appropriate aerial can receive the messages you transmit. As a
result it’s important to be able to differentiate who should be receiving
broadcasts.

The way the radio built into the micro:bit solves this problem is quite simple:


	It’s possible to tune the radio to different channels (numbered 0-83). This works in exactly the same way as kids’ walkie-talkie radios: everyone tunes into the same channel and everyone hears what everyone else broadcasts via that channel. As with walkie-talkies, if you use adjacent channels there is a slight possibility of interference.


	The radio module allows you to specify two pieces of information: an address and a group. The address is like a postal address whereas a group is like a specific recipient at the address. The important thing is the radio will filter out messages that it receives that do not match your address and group. As a result, it’s important to pre-arrange the address and group your application is going to use.




Of course, the micro:bit is still receiving broadcast messages for other
address/group combinations. The important thing is you don’t need to worry
about filtering those out. Nevertheless, if someone were clever enough, they
could just read all the wireless network traffic no matter what the target
address/group was supposed to be. In this case, it’s essential to use
encrypted means of communication so only the desired recipient can actually
read the message that was broadcast. Cryptography is a fascinating subject but,
unfortunately, beyond the scope of this tutorial.



Fireflies

This is a firefly:

[image: ../_images/firefly.gif]
It’s a sort of bug that uses bioluminescence to signal (without wires) to its
friends. Here’s what they look like when they signal to each other:

[image: ../_images/fireflies.gif]
The BBC have rather a beautiful video [http://www.bbc.com/earth/story/20160224-worlds-largest-gathering-of-synchronised-fireflies] of fireflies available online.

We’re going to use the radio module to create something akin to a swarm of
fireflies signalling to each other.

First import radio to make the functions available to your Python program.
At this point the radio module is configured to sensible defaults that make
it compatible with other platforms that may target the BBC micro:bit. It is
possible to control many of the features discussed above (such as channel and
addressing) as well as the amount of power used to broadcast messages and the
amount of RAM the incoming message queue will take up. The API documentation
contains all the information you need to configure the radio to your needs.

Assuming we’re happy with the defaults, the simplest way to send a message is
like this:

radio.send("a message")





The example uses the send function to simply broadcast the string
“a message”. To receive a message is even easier:

new_message = radio.receive()





As messages are received they are put on a message queue. The receive
function returns the oldest message from the queue as a string, making space
for a new incoming message. If the message queue fills up, then new incoming
messages are ignored.

That’s really all there is to it! (Although the radio module is also powerful
enough that you can send any arbitrary type of data, not just strings. See the
API documentation for how this works.)

Armed with this knowledge, it’s simple to make micro:bit fireflies like this:

# A micro:bit Firefly.
# By Nicholas H.Tollervey. Released to the public domain.
import radio
import random
from microbit import display, Image, button_a, sleep

# Create the "flash" animation frames. Can you work out how it's done?
flash = [Image().invert()*(i/9) for i in range(9, -1, -1)]

# Event loop.
while True:
    # Button A sends a "flash" message.
    if button_a.was_pressed():
        radio.send('flash')  # a-ha
    # Read any incoming messages.
    incoming = radio.receive()
    if incoming == 'flash':
        # If there's an incoming "flash" message display
        # the firefly flash animation after a random short
        # pause.
        sleep(random.randint(50, 350))
        display.show(flash, delay=100, wait=False)
        # Randomly re-broadcast the flash message after a
        # slight delay.
        if random.randint(0, 9) == 0:
            sleep(500)
            radio.send('flash')  # a-ha





The important stuff happens in the event loop. First, it checks if button A was
pressed and, if it was, uses the radio to send the message “flash”. Then it
reads any messages from the message queue with radio.receive(). If there is
a message i