

BBC micro:bit MicroPython documentation

Welcome!

The BBC micro:bit is a small computing device for children. One of the
languages it understands is the popular Python programming language. The
version of Python that runs on the BBC micro:bit is called MicroPython.

This documentation includes lessons for teachers
and API documentation for developers (check out the index on the left). We hope
you enjoy developing for the BBC micro:bit using MicroPython.

If you’re a new programmer, teacher or unsure where to start, begin with the tutorials.

[image: _images/comic.png]
To get involved with the community subscribe to the microbit@python.org
mailing list (https://mail.python.org/mailman/listinfo/microbit).

Note

This project is under active development. Please help other
developers by adding tips, how-tos, and Q&A to this document.
Thanks!

Projects related to MicroPython on the BBC micro:bit include:

	Mu [https://github.com/ntoll/mu] - a simple code editor for kids, teachers and beginner programmers. Probably the easiest way for people to program MicroPython on the BBC micro:bit.

	uFlash [https://uflash.readthedocs.io/en/latest/] - a command line tool for flashing raw Python scripts onto a BBC micro:bit.

Tutorials

	Introduction
	Hello, World!

	Images

	Buttons

	Input/Output

	Music

	Random

	Movement

	Gestures

	Direction

	Storage

	Speech

	Network

	Radio

	Next Steps

	Hello, World!

	Images
	DIY Images

	Animation

	Buttons
	Event Loops

	Handling an Event

	Input/Output
	Ticklish Python

	Bleeps and Bloops

	Music
	Wolfgang Amadeus Microbit

	Sound Effects

	Random
	Random Numbers

	Seeds of Chaos

	Movement
	Musical Mayhem

	Gestures
	Magic-8

	Direction
	Compass

	Storage
	Open Sesame

	OS SOS

	File Transfer

	Mainly main.py

	Speech
	DALEK Poetry

	Say Something

	Poetry on Demand

	Phonemes

	Sing A Song of Micro:bit

	Network
	Connection

	Signal

	Protocol

	Message

	Application

	The End Result

	Radio
	Layers upon Layers

	Bytes

	Addressing

	Fireflies

	Next Steps

API Reference

	micro:bit Micropython API
	The microbit module

	Microbit Module
	Functions

	Attributes

	Classes

	Modules

	Accelerometer
	Functions

	Audio
	Functions

	Classes

	Using audio

	Technical Details

	Example

	Bluetooth

	Buttons
	Attributes

	Classes

	Example

	Compass
	Functions

	Example

	Display
	Functions

	Example

	Local Persistent File System

	I²C
	Functions

	Image
	Classes

	Attributes

	Operations

	Machine
	Functions

	Reading Memory

	MicroPython
	Functions

	Music
	Musical Notation

	Functions

	NeoPixel
	Classes

	Operations

	Using Neopixels

	Example

	The os Module
	Functions

	Input/Output Pins
	Pin Functions

	Classes

	Radio
	Constants

	Functions

	Random Number Generation
	Functions

	Speech
	Functions

	Punctuation

	Timbre

	Phonemes

	Singing

	How Does it Work?

	Example

	SPI
	Functions

	UART
	Functions

	utime
	Functions

Developer Guide

	Installation
	Dependencies

	Development Environment

	Installation Scenarios

	Next steps

	Flashing Firmware
	Building firmware

	Preparing firmware and a Python program

	Flashing to the micro:bit

	Accessing the REPL
	Using a serial communication program

	Determining the port

	Communicating with the micro:bit

	Firmware Hex File
	Appended script format

	UICR format

	Steps to create the firmware.hex file

	Developer FAQ

	Contributing
	Checklist

	Index

	Module Index

	Search Page

micro:bit Micropython API

The microbit module

Everything directly related to interacting with the hardware lives in the microbit module. For ease of use it’s recommended you start all scripts with:

from microbit import *

The following documentation assumes you have done this.

There are a few functions available directly:

sleep for the given number of milliseconds.
sleep(ms)
returns the number of milliseconds since the micro:bit was last switched on.
running_time()
makes the micro:bit enter panic mode (this usually happens when the DAL runs
out of memory, and causes a sad face to be drawn on the display). The error
code can be any arbitrary integer value.
panic(error_code)
resets the micro:bit.
reset()

The rest of the functionality is provided by objects and classes in the microbit module, as described below.

Note that the API exposes integers only (ie no floats are needed, but they may be accepted). We thus use milliseconds for the standard time unit.

Note

You can see a list of all available modules by writing help('modules') in the REPL.

Buttons

There are 2 buttons:

button_a
button_b

These are both objects and have the following methods:

returns True or False to indicate if the button is pressed at the time of
the method call.
button.is_pressed()
returns True or False to indicate if the button was pressed since the device
started or the last time this method was called.
button.was_pressed()
returns the running total of button presses, and resets this counter to zero
button.get_presses()

The LED display

The LED display is exposed via the display object:

gets the brightness of the pixel (x,y). Brightness can be from 0 (the pixel
is off) to 9 (the pixel is at maximum brightness).
display.get_pixel(x, y)
sets the brightness of the pixel (x,y) to val (between 0 [off] and 9 [max
brightness], inclusive).
display.set_pixel(x, y, val)
clears the display.
display.clear()
shows the image.
display.show(image, delay=0, wait=True, loop=False, clear=False)
shows each image or letter in the iterable, with delay ms. in between each.
display.show(iterable, delay=400, wait=True, loop=False, clear=False)
scrolls a string across the display (more exciting than display.show for
written messages).
display.scroll(string, delay=400)

Pins

Provide digital and analog input and output functionality, for the pins in the connector. Some pins are connected internally to the I/O that drives the LED matrix and the buttons.

Each pin is provided as an object directly in the microbit module. This keeps the API relatively flat, making it very easy to use:

	pin0

	pin1

	…

	pin15

	pin16

	Warning: P17-P18 (inclusive) are unavailable.

	pin19

	pin20

Each of these pins are instances of the MicroBitPin class, which offers the following API:

value can be 0, 1, False, True
pin.write_digital(value)
returns either 1 or 0
pin.read_digital()
value is between 0 and 1023
pin.write_analog(value)
returns an integer between 0 and 1023
pin.read_analog()
sets the period of the PWM output of the pin in milliseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period(int)
sets the period of the PWM output of the pin in microseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period_microseconds(int)
returns boolean
pin.is_touched()

Images

Note

You don’t always need to create one of these yourself - you can access the
image shown on the display directly with display.image. display.image
is just an instance of Image, so you can use all of the same methods.

Images API:

creates an empty 5x5 image
image = Image()
create an image from a string - each character in the string represents an
LED - 0 (or space) is off and 9 is maximum brightness. The colon ":"
indicates the end of a line.
image = Image('90009:09090:00900:09090:90009:')
create an empty image of given size
image = Image(width, height)
initialises an Image with the specified width and height. The buffer
should be an array of length width * height
image = Image(width, height, buffer)

methods
returns the image's width (most often 5)
image.width()
returns the image's height (most often 5)
image.height()
sets the pixel at the specified position (between 0 and 9). May fail for
constant images.
image.set_pixel(x, y, value)
gets the pixel at the specified position (between 0 and 9)
image.get_pixel(x, y)
returns a new image created by shifting the picture left 'n' times.
image.shift_left(n)
returns a new image created by shifting the picture right 'n' times.
image.shift_right(n)
returns a new image created by shifting the picture up 'n' times.
image.shift_up(n)
returns a new image created by shifting the picture down 'n' times.
image.shift_down(n)
get a compact string representation of the image
repr(image)
get a more readable string representation of the image
str(image)

#operators
returns a new image created by superimposing the two images
image + image
returns a new image created by multiplying the brightness of each pixel by n
image * n

built-in images.
Image.HEART
Image.HEART_SMALL
Image.HAPPY
Image.SMILE
Image.SAD
Image.CONFUSED
Image.ANGRY
Image.ASLEEP
Image.SURPRISED
Image.SILLY
Image.FABULOUS
Image.MEH
Image.YES
Image.NO
Image.CLOCK12 # clock at 12 o' clock
Image.CLOCK11
... # many clocks (Image.CLOCKn)
Image.CLOCK1 # clock at 1 o'clock
Image.ARROW_N
... # arrows pointing N, NE, E, SE, S, SW, W, NW (microbit.Image.ARROW_direction)
Image.ARROW_NW
Image.TRIANGLE
Image.TRIANGLE_LEFT
Image.CHESSBOARD
Image.DIAMOND
Image.DIAMOND_SMALL
Image.SQUARE
Image.SQUARE_SMALL
Image.RABBIT
Image.COW
Image.MUSIC_CROTCHET
Image.MUSIC_QUAVER
Image.MUSIC_QUAVERS
Image.PITCHFORK
Image.XMAS
Image.PACMAN
Image.TARGET
Image.TSHIRT
Image.ROLLERSKATE
Image.DUCK
Image.HOUSE
Image.TORTOISE
Image.BUTTERFLY
Image.STICKFIGURE
Image.GHOST
Image.SWORD
Image.GIRAFFE
Image.SKULL
Image.UMBRELLA
Image.SNAKE
built-in lists - useful for animations, e.g. display.show(Image.ALL_CLOCKS)
Image.ALL_CLOCKS
Image.ALL_ARROWS

The accelerometer

The accelerometer is accessed via the accelerometer object:

read the X axis of the device. Measured in milli-g.
accelerometer.get_x()
read the Y axis of the device. Measured in milli-g.
accelerometer.get_y()
read the Z axis of the device. Measured in milli-g.
accelerometer.get_z()
get tuple of all three X, Y and Z readings (listed in that order).
accelerometer.get_values()
return the name of the current gesture.
accelerometer.current_gesture()
return True or False to indicate if the named gesture is currently active.
accelerometer.is_gesture(name)
return True or False to indicate if the named gesture was active since the
last call.
accelerometer.was_gesture(name)
return a tuple of the gesture history. The most recent is listed last.
accelerometer.get_gestures()

The recognised gestures are: up, down, left, right, face up, face down, freefall, 3g, 6g, 8g, shake.

The compass

The compass is accessed via the compass object:

calibrate the compass (this is needed to get accurate readings).
compass.calibrate()
return a numeric indication of degrees offset from "north".
compass.heading()
return an numeric indication of the strength of magnetic field around
the micro:bit.
compass.get_field_strength()
returns True or False to indicate if the compass is calibrated.
compass.is_calibrated()
resets the compass to a pre-calibration state.
compass.clear_calibration()

I2C bus

There is an I2C bus on the micro:bit that is exposed via the i2c object. It has the following methods:

read n bytes from device with addr; repeat=True means a stop bit won't
be sent.
i2c.read(addr, n, repeat=False)
write buf to device with addr; repeat=True means a stop bit won't be sent.
i2c.write(addr, buf, repeat=False)

UART

Use uart to communicate with a serial device connected to the device’s I/O pins:

set up communication (use pins 0 [TX] and 1 [RX]) with a baud rate of 9600.
uart.init()
return True or False to indicate if there are incoming characters waiting to
be read.
uart.any()
return (read) n incoming characters.
uart.read(n)
return (read) as much incoming data as possible.
uart.read()
return (read) all the characters to a newline character is reached.
uart.readline()
read bytes into the referenced buffer.
uart.readinto(buffer)
write bytes from the buffer to the connected device.
uart.write(buffer)

Microbit Module

The microbit module gives you access to all the hardware that is built-in
into your board.

Functions

	
microbit.panic(n)

	Enter a panic mode. Requires restart. Pass in an arbitrary integer <= 255
to indicate a status:

microbit.panic(255)

	
microbit.reset()

	Restart the board.

	
microbit.sleep(n)

	Wait for n milliseconds. One second is 1000 milliseconds, so:

microbit.sleep(1000)

will pause the execution for one second. n can be an integer or
a floating point number.

	
microbit.running_time()

	Return the number of milliseconds since the board was switched on or
restarted.

	
microbit.temperature()

	Return the temperature of the micro:bit in degrees Celcius.

Attributes

	Buttons

	Input/Output Pins

Classes

	Image

Modules

	Display

	UART

	SPI

	I²C

	Accelerometer

	Compass

Buttons

There are two buttons on the board, called button_a and button_b.

Attributes

	
button_a

	A Button instance (see below) representing the left button.

	
button_b

	Represents the right button.

Classes

	
class Button

	Represents a button.

Note

This class is not actually available to the user, it is only used by
the two button instances, which are provided already initialized.

	
is_pressed()

	Returns True if the specified button button is currently being
held down, and False otherwise.

	
was_pressed()

	Returns True or False to indicate if the button was pressed
(went from up to down) since the device started or the last time this
method was called. Calling this method will clear the press state so
that the button must be pressed again before this method will return
True again.

	
get_presses()

	Returns the running total of button presses, and resets this total
to zero before returning.

Example

import microbit

while True:
 if microbit.button_a.is_pressed() and microbit.button_b.is_pressed():
 microbit.display.scroll("AB")
 break
 elif microbit.button_a.is_pressed():
 microbit.display.scroll("A")
 elif microbit.button_b.is_pressed():
 microbit.display.scroll("B")
 microbit.sleep(100)

Input/Output Pins

The pins are your board’s way to communicate with external devices connected to
it. There are 19 pins for your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

For example, the script below will change the display on the micro:bit
depending upon the digital reading on pin 0:

from microbit import *

while True:
 if pin0.read_digital():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

Pin Functions

[image: _images/pinout.png]
Those pins are available as attributes on the microbit
module:microbit.pin0 - microbit.pin20.

	Pin

	Type

	Function

	0

	Touch

	Pad 0

	1

	Touch

	Pad 1

	2

	Touch

	Pad 2

	3

	Analog

	Column 1

	4

	Analog

	Column 2

	5

	Digital

	Button A

	6

	Digital

	Row 2

	7

	Digital

	Row 1

	8

	Digital

	

	9

	Digital

	Row 3

	10

	Analog

	Column 3

	11

	Digital

	Button B

	12

	Digital

	

	13

	Digital

	SPI MOSI

	14

	Digital

	SPI MISO

	15

	Digital

	SPI SCK

	16

	Digital

	

	
	
	

	19

	Digital

	I2C SCL

	20

	Digital

	I2C SDA

The above table summarizes the pins available, their types (see below) and what
they are internally connected to.

Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier
can do it – by modulating the voltage on the pin. Those pins can only either
enable the full 3.3V output, or pull it down to 0V. However, it is still
possible to control the brightness of LEDs or speed of an electric motor, by
switching that voltage on and off very fast, and controlling how long it is on
and how long it is off. This technique is called Pulse-Width Modulation (PWM),
and that’s what the write_analog method below does.

[image: _images/pwm.png]
Above you can see the diagrams of three different PWM signals. All of them have
the same period (and thus frequency), but they have different duty cycles.

The first one would be generated by write_analog(511), as it has exactly
50% duty – the power is on half of the time, and off half of the time. The
result of that is that the total energy of this signal is the same, as if it
was 1.65V instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with
write_analog(255). It has similar effect as if 0.825V was being output on
that pin.

The third signal has 75% duty cycle, and can be generated with
write_analog(767). It has three times as much energy, as the second signal,
and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia
by themselves, or LEDs, which blink too fast for the human eye to see the
difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like
the very old computer games – mostly because those games also only could do
that.

Classes

There are three kinds of pins, differing in what is available for them. They
are represented by the classes listed below. Note that they form a hierarchy,
so that each class has all the functionality of the previous class, and adds
its own to that.

Note

Those classes are not actually available for the user, you can’t create
new instances of them. You can only use the instances already provided,
representing the physical pins on your board.

	
class microbit.MicroBitDigitalPin

	
	
read_digital()

	Return 1 if the pin is high, and 0 if it’s low.

	
write_digital(value)

	Set the pin to high if value is 1, or to low, if it is 0.

	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).

	
write_analog(value)

	Output a PWM signal on the pin, with the duty cycle proportional to
the provided value. The value may be either an integer or a
floating point number between 0 (0% duty cycle) and 1023 (100% duty).

	
set_analog_period(period)

	Set the period of the PWM signal being output to period in
milliseconds. The minimum valid value is 1ms.

	
set_analog_period_microseconds(period)

	Set the period of the PWM signal being output to period in
microseconds. The minimum valid value is 256µs.

	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).

	
class microbit.MicroBitTouchPin

	
	
is_touched()

	Return True if the pin is being touched with a finger, otherwise
return False.

This test is done by measuring how much resistance there is between the
pin and ground. A low resistance gives a reading of True. To get
a reliable reading using a finger you may need to touch the ground pin
with another part of your body, for example your other hand.

The pull mode for a pin is automatically configured when the pin changes to an
input mode. Input modes are when you call read_analog / read_digital /
is_touched. The default pull mode for these is, respectively, NO_PULL,
PULL_DOWN, PULL_UP. Calling set_pull will configure the pin to be
in read_digital mode with the given pull mode.

Note

The micro:bit has external weak (10M) pull-ups fitted on pins
0, 1 and 2 only, in order for the touch sensing to work.

There are also external (10k) pull-ups fitted on pins 5 and 11, in order
for buttons A and B to work.

GPIO pins are also used for the display. 6 of these are routed to the
edge connector at 3, 4, 6, 7, 9. and 10. If you want to use these pins
for another purpose, you may need to turn the display off [https://microbit-micropython.readthedocs.io/en/latest/display.html#microbit.display.off].

See the edge connector data sheet [http://tech.microbit.org/hardware/edgeconnector_ds].

Image

The Image class is used to create images that can be displayed easily on
the device’s LED matrix. Given an image object it’s possible to display it via
the display API:

display.show(Image.HAPPY)

[image: _images/image-smile.png]
There are four ways in which you can construct an image:

	Image() - Create a blank 5x5 image

	Image(string) - Create an image by parsing the string, a single character
returns that glyph

	Image(width, height) - Create a blank image of given size

	Image(width, height, buffer) - Create an image from the given buffer

Classes

	
class microbit.Image(string)

	
class microbit.Image(width=None, height=None, buffer=None)

	If string is used, it has to consist of digits 0-9 arranged into
lines, describing the image, for example:

image = Image("90009:"
 "09090:"
 "00900:"
 "09090:"
 "90009")

will create a 5×5 image of an X. The end of a line is indicated by a colon.
It’s also possible to use a newline (n) to indicate the end of a line
like this:

image = Image("90009\n"
 "09090\n"
 "00900\n"
 "09090\n"
 "90009")

The other form creates an empty image with width columns and
height rows. Optionally buffer can be an array of
width``×``height integers in range 0-9 to initialize the image:

Image(2, 2, b'\x08\x08\x08\x08')

or:

Image(2, 2, bytearray([9,9,9,9]))

Will create a 2 x 2 pixel image at full brightness.

Note

Keyword arguments cannot be passed to buffer.

	
width()

	Return the number of columns in the image.

	
height()

	Return the numbers of rows in the image.

	
set_pixel(x, y, value)

	Set the brightness of the pixel at column x and row y to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
get_pixel(x, y)

	Return the brightness of pixel at column x and row y as an
integer between 0 and 9.

	
shift_left(n)

	Return a new image created by shifting the picture left by n
columns.

	
shift_right(n)

	Same as image.shift_left(-n).

	
shift_up(n)

	Return a new image created by shifting the picture up by n rows.

	
shift_down(n)

	Same as image.shift_up(-n).

	
crop(x, y, w, h)

	Return a new image by cropping the picture to a width of w and a
height of h, starting with the pixel at column x and row y.

	
copy()

	Return an exact copy of the image.

	
invert()

	Return a new image by inverting the brightness of the pixels in the
source image.

	
fill(value)

	Set the brightness of all the pixels in the image to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
blit(src, x, y, w, h, xdest=0, ydest=0)

	Copy the rectangle defined by x, y, w, h from the image src into
this image at xdest, ydest.
Areas in the source rectangle, but outside the source image are treated as having a value of 0.

shift_left(), shift_right(), shift_up(), shift_down() and crop()
can are all implemented by using blit().
For example, img.crop(x, y, w, h) can be implemented as:

def crop(self, x, y, w, h):
 res = Image(w, h)
 res.blit(self, x, y, w, h)
 return res

Attributes

The Image class also has the following built-in instances of itself
included as its attributes (the attribute names indicate what the image
represents):

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

Finally, related collections of images have been grouped together:

* ``Image.ALL_CLOCKS``
* ``Image.ALL_ARROWS``

Operations

repr(image)

Get a compact string representation of the image.

str(image)

Get a readable string representation of the image.

image1 + image2

Create a new image by adding the brightness values from the two images for
each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

Display

This module controls the 5×5 LED display on the front of your board. It can
be used to display images, animations and even text.

[image: _images/scroll-hello.gif]

Functions

	
microbit.display.get_pixel(x, y)

	Return the brightness of the LED at column x and row y as an
integer between 0 (off) and 9 (bright).

	
microbit.display.set_pixel(x, y, value)

	Set the brightness of the LED at column x and row y to value,
which has to be an integer between 0 and 9.

	
microbit.display.clear()

	Set the brightness of all LEDs to 0 (off).

	
microbit.display.show(image)

	Display the image.

	
microbit.display.show(value, delay=400, *, wait=True, loop=False, clear=False)

	If value is a string, float or integer, display letters/digits in sequence.
Otherwise, if value is an iterable sequence of images, display these images in sequence.
Each letter, digit or image is shown with delay milliseconds between them.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If clear is True, the display will be cleared after the iterable has finished.

Note that the wait, loop and clear arguments must be specified
using their keyword.

Note

If using a generator as the iterable, then take care not to allocate any memory
in the generator as allocating memory in an interrupt is prohibited and will raise a
MemoryError.

	
microbit.display.scroll(value, delay=150, *, wait=True, loop=False, monospace=False)

	Scrolls value horizontally on the display. If value is an integer or float it is
first converted to a string using str(). The delay parameter controls how fast
the text is scrolling.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If monospace is True, the characters will all take up 5 pixel-columns
in width, otherwise there will be exactly 1 blank pixel-column between each
character as they scroll.

Note that the wait, loop and monospace arguments must be specified
using their keyword.

	
microbit.display.on()

	Use on() to turn on the display.

	
microbit.display.off()

	Use off() to turn off the display (thus allowing you to re-use the GPIO
pins associated with the display for other purposes).

	
microbit.display.is_on()

	Returns True if the display is on, otherwise returns False.

	
microbit.display.read_light_level()

	Use the display’s LEDs in reverse-bias mode to sense the amount of light
falling on the display. Returns an integer between 0 and 255 representing
the light level, with larger meaning more light.

Example

To continuously scroll a string across the display, and do it in the background,
you can use:

import microbit

microbit.display.scroll('Hello!', wait=False, loop=True)

UART

The uart module lets you talk to a device connected to your board using
a serial interface.

Functions

	
microbit.uart.init(baudrate=9600, bits=8, parity=None, stop=1, *, tx=None, rx=None)

	Initialize serial communication with the specified parameters on the
specified tx and rx pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

Warning

Initializing the UART on external pins will cause the Python console on
USB to become unaccessible, as it uses the same hardware. To bring the
console back you must reinitialize the UART without passing anything for
tx or rx (or passing None to these arguments). This means
that calling uart.init(115200) is enough to restore the Python console.

The baudrate defines the speed of communication. Common baud
rates include:

	9600

	14400

	19200

	28800

	38400

	57600

	115200

The bits defines the size of bytes being transmitted, and the board
only supports 8. The parity parameter defines how parity is checked,
and it can be None, microbit.uart.ODD or microbit.uart.EVEN.
The stop parameter tells the number of stop bits, and has to be 1 for
this board.

If tx and rx are not specified then the internal USB-UART TX/RX pins
are used which connect to the USB serial converter on the micro:bit, thus
connecting the UART to your PC. You can specify any other pins you want by
passing the desired pin objects to the tx and rx parameters.

Note

When connecting the device, make sure you “cross” the wires – the TX
pin on your board needs to be connected with the RX pin on the device,
and the RX pin – with the TX pin on the device. Also make sure the
ground pins of both devices are connected.

	
uart.any()

	Return True if any data is waiting, else False.

	
uart.read([nbytes])

	Read bytes. If nbytes is specified then read at most that many
bytes, otherwise read as many bytes as possible.

Return value: a bytes object or None on timeout.

A bytes object contains a sequence of bytes. Because
ASCII [https://en.wikipedia.org/wiki/ASCII] characters can fit in
single bytes this type of object is often used to represent simple text
and offers methods to manipulate it as such, e.g. you can display the text
using the print() function.

You can also convert this object into a string object, and if there are
non-ASCII characters present the encoding can be specified:

msg_bytes = uart.read()
msg_str = str(msg, 'UTF-8')

Note

The timeout for all UART reads depends on the baudrate and is otherwise
not changeable via Python. The timeout, in milliseconds, is given by:
microbit_uart_timeout_char = 13000 / baudrate + 1

Note

The internal UART RX buffer is 64 bytes, so make sure data is read
before the buffer is full or some of the data might be lost.

Warning

Receiving 0x03 will stop your program by raising a Keyboard
Interrupt. You can enable or disable this using
micropython.kbd_intr().

	
uart.readall()

	Removed since version 1.0.

Instead, use uart.read() with no arguments, which will read as much data
as possible.

	
uart.readinto(buf[, nbytes])

	Read bytes into the buf. If nbytes is specified then read at most
that many bytes. Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.

	
uart.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is
included in the returned bytes.

	
uart.write(buf)

	Write the buffer to the bus, it can be a bytes object or a string:

uart.write('hello world')
uart.write(b'hello world')
uart.write(bytes([1, 2, 3]))

Return value: number of bytes written or None on timeout.

SPI

The spi module lets you talk to a device connected to your board using
a serial peripheral interface (SPI) bus. SPI uses a so-called master-slave
architecture with a single master. You will need to specify the connections
for three signals:

	SCLK : Serial Clock (output from master).

	MOSI : Master Output, Slave Input (output from master).

	MISO : Master Input, Slave Output (output from slave).

Functions

	
microbit.spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13, mosi=pin15, miso=pin14)

	Initialize SPI communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only
bits=8 is supported. However, this may change in the future.

The mode determines the combination of clock polarity and phase
according to the following convention, with polarity as the high order bit
and phase as the low order bit:

	SPI Mode

	Polarity (CPOL)

	Phase (CPHA)

	0

	0

	0

	1

	0

	1

	2

	1

	0

	3

	1

	1

Polarity (aka CPOL) 0 means that the clock is at logic value 0 when idle
and goes high (logic value 1) when active; polarity 1 means the clock is
at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock,
and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for
each type of signal.

	
spi.read(nbytes)

	Read at most nbytes. Returns what was read.

	
spi.write(buffer)

	Write the buffer of bytes to the bus.

	
spi.write_readinto(out, in)

	Write the out buffer to the bus and read any response into the in
buffer. The length of the buffers should be the same. The buffers can be
the same object.

I²C

The i2c module lets you communicate with devices connected to your board
using the I²C bus protocol. There can be multiple slave devices connected at
the same time, and each one has its own unique address, that is either fixed
for the device or configured on it. Your board acts as the I²C master.

We use 7-bit addressing for devices because of the reasons stated
here [http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing].

This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to
send and how to interpret the responses, depends on the device in question and
should be described separately in that device’s documentation.

Functions

	
microbit.i2c.init(freq=100000, sda=pin20, scl=pin19)

	Re-initialize peripheral with the specified clock frequency freq on the
specified sda and scl pins.

Warning

Changing the I²C pins from defaults will make the accelerometer and
compass stop working, as they are connected internally to those pins.

	
microbit.i2c.scan()

	Scan the bus for devices. Returns a list of 7-bit addresses corresponding
to those devices that responded to the scan.

	
microbit.i2c.read(addr, n, repeat=False)

	Read n bytes from the device with 7-bit address addr. If repeat
is True, no stop bit will be sent.

	
microbit.i2c.write(addr, buf, repeat=False)

	Write bytes from buf to the device with 7-bit address addr. If
repeat is True, no stop bit will be sent.

Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the
device’s SDA pin to micro:bit pin 20. You also must connect the device’s
ground to the micro:bit ground (pin GND). You may need to power the device
using an external power supply or the micro:bit.

There are internal pull-up resistors on the I²C lines of the board, but with
particularly long wires or large number of devices you may need to add
additional pull-up resistors, to ensure noise-free communication.

Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer
also provides convenience functions for detecting gestures. The
recognised gestures are: up, down, left, right, face up,
face down, freefall, 3g, 6g, 8g, shake.

By default MicroPython sets the accelerometer range to +/- 2g, changing the
accelerometer range is currently not possible in MicroPython.
The accelerometer returns a value in the range 0..1024 for each axis, which is
then scaled accordingly.

Functions

	
microbit.accelerometer.get_x()

	Get the acceleration measurement in the x axis, as a positive or
negative integer, depending on the direction. The measurement is given in
milli-g. By default the accelerometer is configured with a range of +/- 2g,
and so this method will return within the range of +/- 2000mg.

	
microbit.accelerometer.get_y()

	Get the acceleration measurement in the y axis, as a positive or
negative integer, depending on the direction. The measurement is given in
milli-g. By default the accelerometer is configured with a range of +/- 2g,
and so this method will return within the range of +/- 2000mg.

	
microbit.accelerometer.get_z()

	Get the acceleration measurement in the z axis, as a positive or
negative integer, depending on the direction. The measurement is given in
milli-g. By default the accelerometer is configured with a range of +/- 2g,
and so this method will return within the range of +/- 2000mg.

	
microbit.accelerometer.get_values()

	Get the acceleration measurements in all axes at once, as a three-element
tuple of integers ordered as X, Y, Z.
By default the accelerometer is configured with a range of +/- 2g, and so
X, Y, and Z will be within the range of +/-2000mg.

	
microbit.accelerometer.current_gesture()

	Return the name of the current gesture.

Note

MicroPython understands the following gesture names: "up", "down",
"left", "right", "face up", "face down", "freefall",
"3g", "6g", "8g", "shake". Gestures are always
represented as strings.

	
microbit.accelerometer.is_gesture(name)

	Return True or False to indicate if the named gesture is currently active.

	
microbit.accelerometer.was_gesture(name)

	Return True or False to indicate if the named gesture was active since the
last call.

	
microbit.accelerometer.get_gestures()

	Return a tuple of the gesture history. The most recent is listed last.
Also clears the gesture history before returning.

Note

Gestures are not updated in the background so there needs to be constant
calls to some accelerometer method to do the gesture detection. Usually
gestures can be detected using a loop with a small microbit.sleep() delay.

Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an
answer.

Magic 8 ball by Nicholas Tollervey. February 2016.
#
Ask a question then shake.
#
This program has been placed into the public domain.
from microbit import *
import random

answers = [
 "It is certain",
 "It is decidedly so",
 "Without a doubt",
 "Yes, definitely",
 "You may rely on it",
 "As I see it, yes",
 "Most likely",
 "Outlook good",
 "Yes",
 "Signs point to yes",
 "Reply hazy try again",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it",
 "My reply is no",
 "My sources say no",
 "Outlook not so good",
 "Very doubtful",
]

while True:
 display.show('8')
 if accelerometer.was_gesture('shake'):
 display.clear()
 sleep(1000)
 display.scroll(random.choice(answers))
 sleep(10)

Simple Slalom. Move the device to avoid the obstacles.

Simple Slalom by Larry Hastings, September 2015
#
This program has been placed into the public domain.

import microbit as m
import random

p = m.display.show

min_x = -1024
max_x = 1024
range_x = max_x - min_x

wall_min_speed = 400
player_min_speed = 200

wall_max_speed = 100
player_max_speed = 50

speed_max = 12

while True:

 i = m.Image('00000:'*5)
 s = i.set_pixel

 player_x = 2

 wall_y = -1
 hole = 0

 score = 0
 handled_this_wall = False

 wall_speed = wall_min_speed
 player_speed = player_min_speed

 wall_next = 0
 player_next = 0

 while True:
 t = m.running_time()
 player_update = t >= player_next
 wall_update = t >= wall_next
 if not (player_update or wall_update):
 next_event = min(wall_next, player_next)
 delta = next_event - t
 m.sleep(delta)
 continue

 if wall_update:
 # calculate new speeds
 speed = min(score, speed_max)
 wall_speed = wall_min_speed + int((wall_max_speed - wall_min_speed) * speed / speed_max)
 player_speed = player_min_speed + int((player_max_speed - player_min_speed) * speed / speed_max)

 wall_next = t + wall_speed
 if wall_y < 5:
 # erase old wall
 use_wall_y = max(wall_y, 0)
 for wall_x in range(5):
 if wall_x != hole:
 s(wall_x, use_wall_y, 0)

 wall_reached_player = (wall_y == 4)
 if player_update:
 player_next = t + player_speed
 # find new x coord
 x = m.accelerometer.get_x()
 x = min(max(min_x, x), max_x)
 # print("x accel", x)
 s(player_x, 4, 0) # turn off old pixel
 x = ((x - min_x) / range_x) * 5
 x = min(max(0, x), 4)
 x = int(x + 0.5)
 # print("have", position, "want", x)

 if not handled_this_wall:
 if player_x < x:
 player_x += 1
 elif player_x > x:
 player_x -= 1
 # print("new", position)
 # print()

 if wall_update:
 # update wall position
 wall_y += 1
 if wall_y == 7:
 wall_y = -1
 hole = random.randrange(5)
 handled_this_wall = False

 if wall_y < 5:
 # draw new wall
 use_wall_y = max(wall_y, 0)
 for wall_x in range(5):
 if wall_x != hole:
 s(wall_x, use_wall_y, 6)

 if wall_reached_player and not handled_this_wall:
 handled_this_wall = True
 if (player_x != hole):
 # collision! game over!
 break
 score += 1

 if player_update:
 s(player_x, 4, 9) # turn on new pixel

 p(i)

 p(i.SAD)
 m.sleep(1000)
 m.display.scroll("Score:" + str(score))

 while True:
 if (m.button_a.is_pressed() and m.button_a.is_pressed()):
 break
 m.sleep(100)

Compass

This module lets you access the built-in electronic compass. Before using,
the compass should be calibrated, otherwise the readings may be wrong.

Warning

Calibrating the compass will cause your program to pause until calibration
is complete. Calibration consists of a little game to draw a circle on the
LED display by rotating the device.

Functions

	
microbit.compass.calibrate()

	Starts the calibration process. An instructive message will be scrolled
to the user after which they will need to rotate the device in order to
draw a circle on the LED display.

	
microbit.compass.is_calibrated()

	Returns True if the compass has been successfully calibrated, and
returns False otherwise.

	
microbit.compass.clear_calibration()

	Undoes the calibration, making the compass uncalibrated again.

	
microbit.compass.get_x()

	Gives the reading of the magnetic field strength on the x axis in nano
tesla, as a positive or negative integer, depending on the direction of the
field.

	
microbit.compass.get_y()

	Gives the reading of the magnetic field strength on the y axis in nano
tesla, as a positive or negative integer, depending on the direction of the
field.

	
microbit.compass.get_z()

	Gives the reading of the magnetic field strength on the z axis in nano
tesla, as a positive or negative integer, depending on the direction of the
field.

	
microbit.compass.heading()

	Gives the compass heading, calculated from the above readings, as an
integer in the range from 0 to 360, representing the angle in degrees,
clockwise, with north as 0.

	
microbit.compass.get_field_strength()

	Returns an integer indication of the magnitude of the magnetic field around
the device in nano tesla.

Example

"""
 compass.py
    ~~~~~~~~~~

    Creates a compass.

    The user will need to calibrate the compass first. The compass uses the
    built-in clock images to display the position of the needle.

"""
from microbit import *


# Start calibrating
compass.calibrate()

# Try to keep the needle pointed in (roughly) the correct direction
while True:
    sleep(100)
    needle = ((15 - compass.heading()) // 30) % 12
    display.show(Image.ALL_CLOCKS[needle])











          

      

      

    

  

    
      
          
            
  
Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer
also provides convenience functions for detecting gestures. The
recognised gestures are: up, down, left, right, face up,
face down, freefall, 3g, 6g, 8g, shake.

By default MicroPython sets the accelerometer range to +/- 2g, changing the
accelerometer range is currently not possible in MicroPython.
The accelerometer returns a value in the range 0..1024 for each axis, which is
then scaled accordingly.


Functions


	
microbit.accelerometer.get_x()

	Get the acceleration measurement in the x axis, as a positive or
negative integer, depending on the direction. The measurement is given in
milli-g. By default the accelerometer is configured with a range of +/- 2g,
and so this method will return within the range of +/- 2000mg.






	
microbit.accelerometer.get_y()

	Get the acceleration measurement in the y axis, as a positive or
negative integer, depending on the direction. The measurement is given in
milli-g. By default the accelerometer is configured with a range of +/- 2g,
and so this method will return within the range of +/- 2000mg.






	
microbit.accelerometer.get_z()

	Get the acceleration measurement in the z axis, as a positive or
negative integer, depending on the direction. The measurement is given in
milli-g. By default the accelerometer is configured with a range of +/- 2g,
and so this method will return within the range of +/- 2000mg.






	
microbit.accelerometer.get_values()

	Get the acceleration measurements in all axes at once, as a three-element
tuple of integers ordered as X, Y, Z.
By default the accelerometer is configured with a range of +/- 2g, and so
X, Y, and Z will be within the range of +/-2000mg.






	
microbit.accelerometer.current_gesture()

	Return the name of the current gesture.






Note

MicroPython understands the following gesture names: "up", "down",
"left", "right", "face up", "face down", "freefall",
"3g", "6g", "8g", "shake". Gestures are always
represented as strings.




	
microbit.accelerometer.is_gesture(name)

	Return True or False to indicate if the named gesture is currently active.






	
microbit.accelerometer.was_gesture(name)

	Return True or False to indicate if the named gesture was active since the
last call.






	
microbit.accelerometer.get_gestures()

	Return a tuple of the gesture history. The most recent is listed last.
Also clears the gesture history before returning.






Note

Gestures are not updated in the background so there needs to be constant
calls to some accelerometer method to do the gesture detection. Usually
gestures can be detected using a loop with a small microbit.sleep() delay.




Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an
answer.

# Magic 8 ball by Nicholas Tollervey. February 2016.
#
# Ask a question then shake.
#
# This program has been placed into the public domain.
from microbit import *
import random

answers = [
    "It is certain",
    "It is decidedly so",
    "Without a doubt",
    "Yes, definitely",
    "You may rely on it",
    "As I see it, yes",
    "Most likely",
    "Outlook good",
    "Yes",
    "Signs point to yes",
    "Reply hazy try again",
    "Ask again later",
    "Better not tell you now",
    "Cannot predict now",
    "Concentrate and ask again",
    "Don't count on it",
    "My reply is no",
    "My sources say no",
    "Outlook not so good",
    "Very doubtful",
]

while True:
    display.show('8')
    if accelerometer.was_gesture('shake'):
        display.clear()
        sleep(1000)
        display.scroll(random.choice(answers))
    sleep(10)





Simple Slalom. Move the device to avoid the obstacles.

# Simple Slalom by Larry Hastings, September 2015
#
# This program has been placed into the public domain.

import microbit as m
import random

p = m.display.show

min_x = -1024
max_x = 1024
range_x = max_x - min_x

wall_min_speed = 400
player_min_speed = 200

wall_max_speed = 100
player_max_speed = 50

speed_max = 12


while True:

    i = m.Image('00000:'*5)
    s = i.set_pixel

    player_x = 2

    wall_y = -1
    hole = 0

    score = 0
    handled_this_wall = False

    wall_speed = wall_min_speed
    player_speed = player_min_speed

    wall_next = 0
    player_next = 0

    while True:
        t = m.running_time()
        player_update = t >= player_next
        wall_update = t >= wall_next
        if not (player_update or wall_update):
            next_event = min(wall_next, player_next)
            delta = next_event - t
            m.sleep(delta)
            continue

        if wall_update:
            # calculate new speeds
            speed = min(score, speed_max)
            wall_speed = wall_min_speed + int((wall_max_speed - wall_min_speed) * speed / speed_max)
            player_speed = player_min_speed + int((player_max_speed - player_min_speed) * speed / speed_max)

            wall_next = t + wall_speed
            if wall_y < 5:
                # erase old wall
                use_wall_y = max(wall_y, 0)
                for wall_x in range(5):
                    if wall_x != hole:
                        s(wall_x, use_wall_y, 0)

        wall_reached_player = (wall_y == 4)
        if player_update:
            player_next = t + player_speed
            # find new x coord
            x = m.accelerometer.get_x()
            x = min(max(min_x, x), max_x)
            # print("x accel", x)
            s(player_x, 4, 0) # turn off old pixel
            x = ((x - min_x) / range_x) * 5
            x = min(max(0, x), 4)
            x = int(x + 0.5)
            # print("have", position, "want", x)

            if not handled_this_wall:
                if player_x < x:
                    player_x += 1
                elif player_x > x:
                    player_x -= 1
            # print("new", position)
            # print()

        if wall_update:
            # update wall position
            wall_y += 1
            if wall_y == 7:
                wall_y = -1
                hole = random.randrange(5)
                handled_this_wall = False

            if wall_y < 5:
                # draw new wall
                use_wall_y = max(wall_y, 0)
                for wall_x in range(5):
                    if wall_x != hole:
                        s(wall_x, use_wall_y, 6)

        if wall_reached_player and not handled_this_wall:
            handled_this_wall = True
            if (player_x != hole):
                # collision! game over!
                break
            score += 1

        if player_update:
            s(player_x, 4, 9) # turn on new pixel

        p(i)

    p(i.SAD)
    m.sleep(1000)
    m.display.scroll("Score:" + str(score))

    while True:
        if (m.button_a.is_pressed() and m.button_a.is_pressed()):
            break
        m.sleep(100)













          

      

      

    

  

    
      
          
            
  
Audio

This module allows you play sounds from a speaker attached to the Microbit.
In order to use the audio module you will need to provide a sound source.

A sound source is an iterable (sequence, like list or tuple, or a generator) of
frames, each of 32 samples.
The audio modules plays samples at the rate of 7812.5 samples per second,
which means that it can reproduce frequencies up to 3.9kHz.


Functions


	
audio.play(source, wait=True, pin=pin0, return_pin=None)

	Play the source to completion.

source is an iterable, each element of which must be an AudioFrame.

If wait is True, this function will block until the source is exhausted.

pin specifies which pin the speaker is connected to.

return_pin specifies a differential pin to connect to the speaker
instead of ground.








Classes


	
class audio.AudioFrame

	An AudioFrame object is a list of 32 samples each of which is a signed byte
(whole number between -128 and 127).

It takes just over 4 ms to play a single frame.








Using audio

You will need a sound source, as input to the play function. You can generate your own, like in
examples/waveforms.py or you can use the sound sources provided by modules like synth.




Technical Details


Note

You don’t need to understand this section to use the audio module.
It is just here in case you wanted to know how it works.



The audio module consumes samples at 7812.5 kHz, and uses linear interpolation to
output a PWM signal at 32.5 kHz, which gives tolerable sound quality.

The function play fully copies all data from each AudioFrame before it
calls next() for the next frame, so a sound source can use the same AudioFrame
repeatedly.

The audio module has an internal 64 sample buffer from which it reads samples.
When reading reaches the start or the mid-point of the buffer, it triggers a callback to
fetch the next AudioFrame which is then copied into the buffer.
This means that a sound source has under 4ms to compute the next AudioFrame,
and for reliable operation needs to take less 2ms (which is 32000 cycles, so should be plenty).




Example

from microbit import display, sleep, button_a
import audio
import math

def repeated_frame(frame, count):
    for i in range(count):
        yield frame

# Press button A to skip to next wave.
def show_wave(name, frame, duration=1500):
    display.scroll(name + " wave", wait=False,delay=100)
    audio.play(repeated_frame(frame, duration),wait=False)
    for i in range(75):
        sleep(100)
        if button_a.is_pressed():
            display.clear()
            audio.stop()
            break

frame = audio.AudioFrame()

for i in range(len(frame)):
    frame[i] = int(math.sin(math.pi*i/16)*124+128.5)
show_wave("Sine", frame)

triangle = audio.AudioFrame()

QUARTER = len(triangle)//4
for i in range(QUARTER):
    triangle[i] = i*15
    triangle[i+QUARTER] = 248-i*15
    triangle[i+QUARTER*2] = 128-i*15
    triangle[i+QUARTER*3] = i*15+8
show_wave("Triangle", triangle)

square = audio.AudioFrame()

HALF = len(square)//2
for i in range(HALF):
    square[i] = 8
    square[i+HALF] = 248
show_wave("Square", square)
sleep(1000)

for i in range(len(frame)):
    frame[i] = 252-i*8
show_wave("Sawtooth", frame)

del frame

#Generate a waveform that goes from triangle to square wave, reasonably smoothly.
frames = [ None ] * 32
for i in range(32):
    frames[i] = frame = audio.AudioFrame()
    for j in range(len(triangle)):
        frame[j] = (triangle[j]*(32-i) + square[j]*i)>>5

def repeated_frames(frames, count):
    for frame in frames:
        for i in range(count):
            yield frame


display.scroll("Ascending wave", wait=False)
audio.play(repeated_frames(frames, 60))











          

      

      

    

  

    
      
          
            
  
Bluetooth

While the BBC micro:bit has hardware capable of allowing the device to work as
a Bluetooth Low Energy (BLE) device, it only has 16k of RAM. The BLE stack
alone takes up 12k RAM which means there’s not enough memory for MicroPython
to support Bluetooth.


Note

MicroPython uses the radio hardware with the radio module. This
allows users to create simple yet effective wireless networks of micro:bit
devices.

Furthermore, the protocol used in the radio module is a lot simpler
than BLE, making it far easier to use in an educational context.







          

      

      

    

  

    
      
          
            
  
Buttons

There are two buttons on the board, called button_a and button_b.


Attributes


	
button_a

	A Button instance (see below) representing the left button.






	
button_b

	Represents the right button.








Classes


	
class Button

	Represents a button.


Note

This class is not actually available to the user, it is only used by
the two button instances, which are provided already initialized.




	
is_pressed()

	Returns True if the specified button button is currently being
held down, and False otherwise.






	
was_pressed()

	Returns True or False to indicate if the button was pressed
(went from up to down) since the device started or the last time this
method was called.  Calling this method will clear the press state so
that the button must be pressed again before this method will return
True again.






	
get_presses()

	Returns the running total of button presses, and resets this total
to zero before returning.












Example

import microbit

while True:
    if microbit.button_a.is_pressed() and microbit.button_b.is_pressed():
        microbit.display.scroll("AB")
        break
    elif microbit.button_a.is_pressed():
        microbit.display.scroll("A")
    elif microbit.button_b.is_pressed():
        microbit.display.scroll("B")
    microbit.sleep(100)











          

      

      

    

  

    
      
          
            
  
Compass

This module lets you access the built-in electronic compass. Before using,
the compass should be calibrated, otherwise the readings may be wrong.


Warning

Calibrating the compass will cause your program to pause until calibration
is complete. Calibration consists of a little game to draw a circle on the
LED display by rotating the device.




Functions


	
microbit.compass.calibrate()

	Starts the calibration process. An instructive message will be scrolled
to the user after which they will need to rotate the device in order to
draw a circle on the LED display.






	
microbit.compass.is_calibrated()

	Returns True if the compass has been successfully calibrated, and
returns False otherwise.






	
microbit.compass.clear_calibration()

	Undoes the calibration, making the compass uncalibrated again.






	
microbit.compass.get_x()

	Gives the reading of the magnetic field strength on the x axis in nano
tesla, as a positive or negative integer, depending on the direction of the
field.






	
microbit.compass.get_y()

	Gives the reading of the magnetic field strength on the y axis in nano
tesla, as a positive or negative integer, depending on the direction of the
field.






	
microbit.compass.get_z()

	Gives the reading of the magnetic field strength on the z axis in nano
tesla, as a positive or negative integer, depending on the direction of the
field.






	
microbit.compass.heading()

	Gives the compass heading, calculated from the above readings, as an
integer in the range from 0 to 360, representing the angle in degrees,
clockwise, with north as 0.






	
microbit.compass.get_field_strength()

	Returns an integer indication of the magnitude of the magnetic field around
the device in nano tesla.








Example

"""
    compass.py
    ~~~~~~~~~~

 Creates a compass.

 The user will need to calibrate the compass first. The compass uses the
 built-in clock images to display the position of the needle.

"""
from microbit import *

Start calibrating
compass.calibrate()

Try to keep the needle pointed in (roughly) the correct direction
while True:
 sleep(100)
 needle = ((15 - compass.heading()) // 30) % 12
 display.show(Image.ALL_CLOCKS[needle])

Display

This module controls the 5×5 LED display on the front of your board. It can
be used to display images, animations and even text.

[image: _images/scroll-hello.gif]

Functions

	
microbit.display.get_pixel(x, y)

	Return the brightness of the LED at column x and row y as an
integer between 0 (off) and 9 (bright).

	
microbit.display.set_pixel(x, y, value)

	Set the brightness of the LED at column x and row y to value,
which has to be an integer between 0 and 9.

	
microbit.display.clear()

	Set the brightness of all LEDs to 0 (off).

	
microbit.display.show(image)

	Display the image.

	
microbit.display.show(value, delay=400, *, wait=True, loop=False, clear=False)

	If value is a string, float or integer, display letters/digits in sequence.
Otherwise, if value is an iterable sequence of images, display these images in sequence.
Each letter, digit or image is shown with delay milliseconds between them.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If clear is True, the display will be cleared after the iterable has finished.

Note that the wait, loop and clear arguments must be specified
using their keyword.

Note

If using a generator as the iterable, then take care not to allocate any memory
in the generator as allocating memory in an interrupt is prohibited and will raise a
MemoryError.

	
microbit.display.scroll(value, delay=150, *, wait=True, loop=False, monospace=False)

	Scrolls value horizontally on the display. If value is an integer or float it is
first converted to a string using str(). The delay parameter controls how fast
the text is scrolling.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If monospace is True, the characters will all take up 5 pixel-columns
in width, otherwise there will be exactly 1 blank pixel-column between each
character as they scroll.

Note that the wait, loop and monospace arguments must be specified
using their keyword.

	
microbit.display.on()

	Use on() to turn on the display.

	
microbit.display.off()

	Use off() to turn off the display (thus allowing you to re-use the GPIO
pins associated with the display for other purposes).

	
microbit.display.is_on()

	Returns True if the display is on, otherwise returns False.

	
microbit.display.read_light_level()

	Use the display’s LEDs in reverse-bias mode to sense the amount of light
falling on the display. Returns an integer between 0 and 255 representing
the light level, with larger meaning more light.

Example

To continuously scroll a string across the display, and do it in the background,
you can use:

import microbit

microbit.display.scroll('Hello!', wait=False, loop=True)

Local Persistent File System

It is useful to store data in a persistent manner so that it remains intact
between restarts of the device. On traditional computers this is often achieved
by a file system consisting of named files that hold raw data, and named
directories that contain files. Python supports the various operations needed
to work with such file systems.

However, since the micro:bit is a limited device in terms of both hardware and
storage capacity MicroPython provides a small subset of the functions needed
to persist data on the device. Because of memory constraints there is
approximately 30k of storage available on the file system.

Warning

Re-flashing the device will DESTROY YOUR DATA.

Since the file system is stored in the micro:bit’s flash memory and
flashing the device rewrites all the available flash memory then all your
data will be lost if you flash your device.

However, if you switch your device off the data will remain intact until
you either delete it (see below) or re-flash the device.

MicroPython on the micro:bit provides a flat file system; i.e. there is no
notion of a directory hierarchy, the file system is just a list of named
files. Reading and writing a file is achieved via the standard Python open
function and the resulting file-like object (representing the file) of types
TextIO or BytesIO. Operations for working with files on the file system
(for example, listing or deleting files) are contained within the
os module.

If a file ends in the .py file extension then it can be imported. For
example, a file named hello.py can be imported like this: import hello.

An example session in the MicroPython REPL may look something like this:

>>> with open('hello.py', 'w') as hello:
... hello.write("print('Hello')")
...
>>> import hello
Hello
>>> with open('hello.py') as hello:
... print(hello.read())
...
print('Hello')
>>> import os
>>> os.listdir()
['hello.py']
>>> os.remove('hello.py')
>>> os.listdir()
[]

	
open(filename, mode='r')

	Returns a file object representing the file named in the argument
filename. The mode defaults to 'r' which means open for reading in
text mode. The other common mode is 'w' for writing (overwriting the
content of the file if it already exists). Two other modes are available
to be used in conjunction with the ones describes above: 't' means
text mode (for reading and writing strings) and 'b' means binary mode
(for reading and writing bytes). If these are not specified then 't'
(text mode) is assumed. When in text mode the file object will be an
instance of TextIO. When in binary mode the file object will be an
instance of BytesIO. For example, use 'rb' to read binary data from
a file.

	
class TextIO

	
class BytesIO

	Instances of these classes represent files in the micro:bit’s flat file
system. The TextIO class is used to represent text files. The BytesIO
class is used to represent binary files. They work in exactly the same
except that TextIO works with strings and BytesIO works with bytes.

You do not directly instantiate these classes. Rather, an appropriately
configured instance of the class is returned by the open function
described above.

	
close()

	Flush and close the file. This method has no effect if the file is
already closed. Once the file is closed, any operation on the file
(e.g. reading or writing) will raise an exception.

	
name()

	Returns the name of the file the object represents. This will be the
same as the filename argument passed into the call to the open
function that instantiated the object.

	
read(size)

	Read and return at most size characters as a single string or
size bytes from the file. As a convenience, if size is
unspecified or -1, all the data contained in the file is returned.
Fewer than size characters or bytes may be returned if there are
less than size characters or bytes remaining to be read from
the file.

If 0 characters or bytes are returned, and size was not 0, this
indicates end of file.

A MemoryError exception will occur if size is larger than the
available RAM.

	
readinto(buf, n=-1)

	Read characters or bytes into the buffer buf. If n is supplied,
read n number of bytes or characters into the buffer buf.

	
readline(size)

	Read and return one line from the file. If size is specified, at
most size characters will be read.

The line terminator is always '\n' for strings or b'\n' for
bytes.

	
writable()

	Return True if the file supports writing. If False, write()
will raise OSError.

	
write(buf)

	Write the string or bytes buf to the file and return the number of
characters or bytes written.

I²C

The i2c module lets you communicate with devices connected to your board
using the I²C bus protocol. There can be multiple slave devices connected at
the same time, and each one has its own unique address, that is either fixed
for the device or configured on it. Your board acts as the I²C master.

We use 7-bit addressing for devices because of the reasons stated
here [http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing].

This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to
send and how to interpret the responses, depends on the device in question and
should be described separately in that device’s documentation.

Functions

	
microbit.i2c.init(freq=100000, sda=pin20, scl=pin19)

	Re-initialize peripheral with the specified clock frequency freq on the
specified sda and scl pins.

Warning

Changing the I²C pins from defaults will make the accelerometer and
compass stop working, as they are connected internally to those pins.

	
microbit.i2c.scan()

	Scan the bus for devices. Returns a list of 7-bit addresses corresponding
to those devices that responded to the scan.

	
microbit.i2c.read(addr, n, repeat=False)

	Read n bytes from the device with 7-bit address addr. If repeat
is True, no stop bit will be sent.

	
microbit.i2c.write(addr, buf, repeat=False)

	Write bytes from buf to the device with 7-bit address addr. If
repeat is True, no stop bit will be sent.

Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the
device’s SDA pin to micro:bit pin 20. You also must connect the device’s
ground to the micro:bit ground (pin GND). You may need to power the device
using an external power supply or the micro:bit.

There are internal pull-up resistors on the I²C lines of the board, but with
particularly long wires or large number of devices you may need to add
additional pull-up resistors, to ensure noise-free communication.

Image

The Image class is used to create images that can be displayed easily on
the device’s LED matrix. Given an image object it’s possible to display it via
the display API:

display.show(Image.HAPPY)

[image: _images/image-smile.png]
There are four ways in which you can construct an image:

	Image() - Create a blank 5x5 image

	Image(string) - Create an image by parsing the string, a single character
returns that glyph

	Image(width, height) - Create a blank image of given size

	Image(width, height, buffer) - Create an image from the given buffer

Classes

	
class microbit.Image(string)

	
class microbit.Image(width=None, height=None, buffer=None)

	If string is used, it has to consist of digits 0-9 arranged into
lines, describing the image, for example:

image = Image("90009:"
 "09090:"
 "00900:"
 "09090:"
 "90009")

will create a 5×5 image of an X. The end of a line is indicated by a colon.
It’s also possible to use a newline (n) to indicate the end of a line
like this:

image = Image("90009\n"
 "09090\n"
 "00900\n"
 "09090\n"
 "90009")

The other form creates an empty image with width columns and
height rows. Optionally buffer can be an array of
width``×``height integers in range 0-9 to initialize the image:

Image(2, 2, b'\x08\x08\x08\x08')

or:

Image(2, 2, bytearray([9,9,9,9]))

Will create a 2 x 2 pixel image at full brightness.

Note

Keyword arguments cannot be passed to buffer.

	
width()

	Return the number of columns in the image.

	
height()

	Return the numbers of rows in the image.

	
set_pixel(x, y, value)

	Set the brightness of the pixel at column x and row y to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
get_pixel(x, y)

	Return the brightness of pixel at column x and row y as an
integer between 0 and 9.

	
shift_left(n)

	Return a new image created by shifting the picture left by n
columns.

	
shift_right(n)

	Same as image.shift_left(-n).

	
shift_up(n)

	Return a new image created by shifting the picture up by n rows.

	
shift_down(n)

	Same as image.shift_up(-n).

	
crop(x, y, w, h)

	Return a new image by cropping the picture to a width of w and a
height of h, starting with the pixel at column x and row y.

	
copy()

	Return an exact copy of the image.

	
invert()

	Return a new image by inverting the brightness of the pixels in the
source image.

	
fill(value)

	Set the brightness of all the pixels in the image to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the built-in
read-only images, like Image.HEART.

	
blit(src, x, y, w, h, xdest=0, ydest=0)

	Copy the rectangle defined by x, y, w, h from the image src into
this image at xdest, ydest.
Areas in the source rectangle, but outside the source image are treated as having a value of 0.

shift_left(), shift_right(), shift_up(), shift_down() and crop()
can are all implemented by using blit().
For example, img.crop(x, y, w, h) can be implemented as:

def crop(self, x, y, w, h):
 res = Image(w, h)
 res.blit(self, x, y, w, h)
 return res

Attributes

The Image class also has the following built-in instances of itself
included as its attributes (the attribute names indicate what the image
represents):

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

Finally, related collections of images have been grouped together:

* ``Image.ALL_CLOCKS``
* ``Image.ALL_ARROWS``

Operations

repr(image)

Get a compact string representation of the image.

str(image)

Get a readable string representation of the image.

image1 + image2

Create a new image by adding the brightness values from the two images for
each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

Machine

The machine module contains specific functions related to the micro:bit
hardware. Most functions in this module allow to achieve direct and
unrestricted access to and control of hardware blocks on a system (like CPU,
timers, buses, etc.). Used incorrectly, this can lead to malfunction, lockups,
crashes of your board, and in extreme cases, hardware damage.

Functions

	
machine.unique_id()

	Returns a byte string with a unique identifier of a board. It will vary
from one board instance to another.

	
machine.reset()

	Resets the device in a manner similar to pushing the external RESET button.

	
machine.freq()

	Returns CPU frequency in hertz.

	
machine.disable_irq()

	Disable interrupt requests. Returns the previous IRQ state which should be
considered an opaque value. This return value should be passed to the
machine.enable_irq() function to restore interrupts to their
original state, before machine.disable_irq() was called.

	
machine.enable_irq()

	Re-enable interrupt requests. The state parameter should be the value
that was returned from the most recent call to the
machine.disable_irq() function.

	
machine.time_pulse_us(pin, pulse_level, timeout_us=1000000)

	Time a pulse on the given pin, and return the duration of the pulse in
microseconds. The pulse_level argument should be 0 to time a low pulse or
1 to time a high pulse.

If the current input value of the pin is different to pulse_level, the
function first (*) waits until the pin input becomes equal to
pulse_level, then (**) times the duration that the pin is equal to
pulse_level. If the pin is already equal to pulse_level then timing
starts straight away.

The function will return -2 if there was timeout waiting for condition
marked (*) above, and -1 if there was timeout during the main measurement,
marked (**) above. The timeout is the same for both cases and given by
timeout_us (which is in microseconds).

Reading Memory

The machine module allows you to read from the device’s memory, getting 1
byte (8 bits; mem8), 2 byte (16 bits; mem16), or 4 byte (32 bits;
mem32) words from physical addresses. For example: mem8[0x00] reads 1
byte on physical address 0x00. This has a number of uses, for example if
you’d like to read data from the nRF51 registers.

MicroPython

Access and control MicroPython internals.

Functions

	
micropython.const(expr)

	Used to declare that the expression is a constant so that the compiler can
optimise it. The use of this function should be as follows:

from micropython import const
CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from
outside the module they are declared in. On the other hand, if a constant
begins with an underscore then it is hidden, it is not available as a
global variable, and does not take up any memory during execution.

	
micropython.opt_level([level])

	If level is given then this function sets the optimisation level for
subsequent compilation of scripts, and returns None. Otherwise it returns
the current optimisation level.

The optimisation level controls the following compilation features:

	Assertions: at level 0 assertion statements are enabled and compiled
into the bytecode; at levels 1 and higher assertions are not compiled.

	Built-in __debug__ variable: at level 0 this variable expands to
True; at levels 1 and higher it expands to False.

	Source-code line numbers: at levels 0, 1 and 2 source-code line number
are stored along with the bytecode so that exceptions can report the
line number they occurred at; at levels 3 and higher line numbers are
not stored.

The default optimisation level is usually level 0.

	
micropython.mem_info([verbose])

	Print information about currently used memory. If the verbose argument is
given then extra information is printed.

	
micropython.qstr_info([verbose])

	Print information about currently interned strings. If the verbose argument
is given then extra information is printed.

This includes the number of interned strings and the amount of RAM they
use. In verbose mode it prints out the names of all RAM-interned strings.

	
micropython.stack_use()

	Return an integer representing the current amount of stack that is being
used. The absolute value of this is not particularly useful, rather it
should be used to compute differences in stack usage at different points.

	
micropython.heap_lock()

	

	
micropython.heap_unlock()

	Lock or unlock the heap. When locked no memory allocation can occur and a
MemoryError will be raised if any heap allocation is attempted.

	
micropython.kbd_intr(chr)

	Set the character that will raise a KeyboardInterrupt exception. By default
this is set to 3 during script execution, corresponding to Ctrl-C. Passing
-1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.

This function can be used to prevent the capturing of Ctrl-C on the
incoming stream of characters that is usually used for the REPL, in case
that stream is used for other purposes

Music

This is the music module. You can use it to play simple tunes, provided
that you connect a speaker to your board. By default the music module
expects the speaker to be connected via pin 0:

[image: _images/music-pins.png]
This arrangement can be overridden (as discussed below).

To access this module you need to:

import music

We assume you have done this for the examples below.

Musical Notation

An individual note is specified thus:

NOTE[octave][:duration]

For example, A1:4 refers to the note “A” in octave 1 that lasts for four
ticks (a tick is an arbitrary length of time defined by a tempo setting
function - see below). If the note name R is used then it is treated as a
rest (silence).

Accidentals (flats and sharps) are denoted by the b (flat - a lower case b)
and # (sharp - a hash symbol). For example, Ab is A-flat and C# is
C-sharp.

Note names are case-insensitive.

The octave and duration parameters are states that carry over to
subsequent notes until re-specified. The default states are octave = 4
(containing middle C) and duration = 4 (a crotchet, given the default tempo
settings - see below).

For example, if 4 ticks is a crotchet, the following list is crotchet, quaver,
quaver, crotchet based arpeggio:

['c1:4', 'e:2', 'g', 'c2:4']

The opening of Beethoven’s 5th Symphony would be encoded thus:

['r4:2', 'g', 'g', 'g', 'eb:8', 'r:2', 'f', 'f', 'f', 'd:8']

The definition and scope of an octave conforms to the table listed on this
page about scientific pitch notation [https://en.wikipedia.org/wiki/Scientific_pitch_notation#Table_of_note_frequencies]. For example, middle “C” is 'c4' and
concert “A” (440) is 'a4'. Octaves start on the note “C”.

Functions

	
music.set_tempo(ticks=4, bpm=120)

	Sets the approximate tempo for playback.

A number of ticks (expressed as an integer) constitute a beat. Each beat is to be played at a certain frequency per minute (expressed as the more familiar BPM - beats per minute - also as an integer).

Suggested default values allow the following useful behaviour:

	music.set_tempo() - reset the tempo to default of ticks = 4, bpm = 120

	music.set_tempo(ticks=8) - change the “definition” of a beat

	music.set_tempo(bpm=180) - just change the tempo

To work out the length of a tick in milliseconds is very simple arithmetic: 60000/bpm/ticks_per_beat . For the default values that’s 60000/120/4 = 125 milliseconds or 1 beat = 500 milliseconds.

	
music.get_tempo()

	Gets the current tempo as a tuple of integers: (ticks, bpm).

	
music.play(music, pin=microbit.pin0, wait=True, loop=False)

	Plays music containing the musical DSL defined above.

If music is a string it is expected to be a single note such as,
'c1:4'.

If music is specified as a list of notes (as defined in the section on
the musical DSL, above) then they are played one after the other to perform
a melody.

In both cases, the duration and octave values are reset to
their defaults before the music (whatever it may be) is played.

An optional argument to specify the output pin can be used to override the
default of microbit.pin0.

If wait is set to True, this function is blocking.

If loop is set to True, the tune repeats until stop is called
(see below) or the blocking call is interrupted.

	
music.pitch(frequency, duration=-1, pin=microbit.pin0, wait=True)

	Plays a pitch at the integer frequency given for the specified number of
milliseconds. For example, if the frequency is set to 440 and the length to
1000 then we hear a standard concert A for one second.

Note that you can only play one pitch on one pin at any one time.

If wait is set to True, this function is blocking.

If duration is negative the pitch is played continuously until either the
blocking call is interrupted or, in the case of a background call, a new
frequency is set or stop is called (see below).

	
music.stop(pin=microbit.pin0)

	Stops all music playback on a given pin, eg. music.stop(pin1).
If no pin is given, eg. music.stop() pin0 is assumed.

	
music.reset()

	Resets the state of the following attributes in the following way:

	ticks = 4

	bpm = 120

	duration = 4

	octave = 4

Built in Melodies

For the purposes of education and entertainment, the module contains several
example tunes that are expressed as Python lists. They can be used like this:

>>> import music
>>> music.play(music.NYAN)

All the tunes are either out of copyright, composed by Nicholas H.Tollervey and
released to the public domain or have an unknown composer and are covered by a
fair (educational) use provision.

They are:

	DADADADUM - the opening to Beethoven’s 5th Symphony in C minor.

	ENTERTAINER - the opening fragment of Scott Joplin’s Ragtime classic “The Entertainer”.

	PRELUDE - the opening of the first Prelude in C Major of J.S.Bach’s 48 Preludes and Fugues.

	ODE - the “Ode to Joy” theme from Beethoven’s 9th Symphony in D minor.

	NYAN - the Nyan Cat theme (http://www.nyan.cat/). The composer is unknown. This is fair use for educational porpoises (as they say in New York).

	RINGTONE - something that sounds like a mobile phone ringtone. To be used to indicate an incoming message.

	FUNK - a funky bass line for secret agents and criminal masterminds.

	BLUES - a boogie-woogie 12-bar blues walking bass.

	BIRTHDAY - “Happy Birthday to You…” for copyright status see: http://www.bbc.co.uk/news/world-us-canada-34332853

	WEDDING - the bridal chorus from Wagner’s opera “Lohengrin”.

	FUNERAL - the “funeral march” otherwise known as Frédéric Chopin’s Piano Sonata No. 2 in B♭ minor, Op. 35.

	PUNCHLINE - a fun fragment that signifies a joke has been made.

	PYTHON - John Philip Sousa’s march “Liberty Bell” aka, the theme for “Monty Python’s Flying Circus” (after which the Python programming language is named).

	BADDY - silent movie era entrance of a baddy.

	CHASE - silent movie era chase scene.

	BA_DING - a short signal to indicate something has happened.

	WAWAWAWAA - a very sad trombone.

	JUMP_UP - for use in a game, indicating upward movement.

	JUMP_DOWN - for use in a game, indicating downward movement.

	POWER_UP - a fanfare to indicate an achievement unlocked.

	POWER_DOWN - a sad fanfare to indicate an achievement lost.

Example

"""
 music.py
    ~~~~~~~~

    Plays a simple tune using the Micropython music module.
    This example requires a speaker/buzzer/headphones connected to P0 and GND.
"""
from microbit import *
import music

# play Prelude in C.
notes = [
    'c4:1', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5', 'c4', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5',
    'c4', 'd', 'a', 'd5', 'f5', 'a4', 'd5', 'f5', 'c4', 'd', 'a', 'd5', 'f5', 'a4', 'd5', 'f5',
    'b3', 'd4', 'g', 'd5', 'f5', 'g4', 'd5', 'f5', 'b3', 'd4', 'g', 'd5', 'f5', 'g4', 'd5', 'f5',
    'c4', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5', 'c4', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5',
    'c4', 'e', 'a', 'e5', 'a5', 'a4', 'e5', 'a5', 'c4', 'e', 'a', 'e5', 'a5', 'a4', 'e5', 'a5',
    'c4', 'd', 'f#', 'a', 'd5', 'f#4', 'a', 'd5', 'c4', 'd', 'f#', 'a', 'd5', 'f#4', 'a', 'd5',
    'b3', 'd4', 'g', 'd5', 'g5', 'g4', 'd5', 'g5', 'b3', 'd4', 'g', 'd5', 'g5', 'g4', 'd5', 'g5',
    'b3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5', 'b3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5',
    'a3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5', 'a3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5',
    'd3', 'a', 'd4', 'f#', 'c5', 'd4', 'f#', 'c5', 'd3', 'a', 'd4', 'f#', 'c5', 'd4', 'f#', 'c5',
    'g3', 'b', 'd4', 'g', 'b', 'd', 'g', 'b', 'g3', 'b3', 'd4', 'g', 'b', 'd', 'g', 'b'
]

music.play(notes)













          

      

      

    

  

    
      
          
            
  
NeoPixel

The neopixel module lets you use NeoPixel (WS2812) individually addressable
RGB LED strips with the micro:bit. Note to use the neopixel module, you
need to import it separately with:

import neopixel






Note

From our tests, the Microbit NeoPixel module can drive up to around 256
NeoPixels. Anything above that and you may experience weird bugs and
issues. As the micro:bit can only supply 90mA to external devices,
larger numbers of NeoPixels require an external power supply with common
ground.

NeoPixels are designed to work at 5V, but luckily they still function using
the 3V supply of the BBC micro:bit. Please note that the micro:bit edge
connector should not be connected to anything supplying 5V.



NeoPixels are fun strips of multi-coloured programmable LEDs. This module
contains everything to plug them into a micro:bit and create funky displays,
art and games such as the demo shown below.

[image: _images/neopixel.gif]
To connect a strip of neopixels you’ll need to attach the micro:bit as shown
below (assuming you want to drive the pixels from pin 0 - you can connect
neopixels to pins 1 and 2 too). The label on the crocodile clip tells you where
to attach the other end on the neopixel strip. The VDD pin may be labelled
as something else on some variants of neopixels - for example “V+”. In some
cases it may be called “+5V” and it is only safe to use this if you have no
other 5V devices connected.


Warning

Do not use the 3v connector on the Microbit to power any more than 8
Neopixels at a time.

If you wish to use more than 8 Neopixels, you must use a separate 3v-5v
power supply for the Neopixel power pin.



[image: _images/neopixel-croc.png]

Classes


	
class neopixel.NeoPixel(pin, n)

	Initialise a new strip of n number of neopixel LEDs controlled via pin
pin. Each pixel is addressed by a position (starting from 0). Neopixels
are given RGB (red, green, blue) values between 0-255 as a tuple. For
example, (255,255,255) is white.


	
clear()

	Clear all the pixels.






	
show()

	Show the pixels. Must be called for any updates to become visible.












Operations

Writing the colour doesn’t update the display (use show() for that).

np[0] = (255, 0, 128)  # first element
np[-1] = (0, 255, 0)  # last element
np.show()  # only now will the updated value be shown





To read the colour of a specific pixel just reference it.

print(np[0])








Using Neopixels

Interact with Neopixels as if they were a list of tuples. Each tuple represents
the RGB (red, green and blue) mix of colours for a specific pixel. The RGB
values can range between 0 to 255.

For example, initialise a strip of 8 neopixels on a strip connected to pin0
like this:

import neopixel
np = neopixel.NeoPixel(pin0, 8)





Set pixels by indexing them (like with a Python list). For instance, to
set the first pixel to full brightness red, you would use:

np[0] = (255, 0, 0)





Or the final pixel to purple:

np[-1] = (255, 0, 255)





Get the current colour value of a pixel by indexing it. For example, to print
the first pixel’s RGB value use:

print(np[0])





Finally, to push the new colour data to your Neopixel strip, use the .show()
function:

np.show()





If nothing is happening, it’s probably because you’ve forgotten this final
step..!


Note

If you’re not seeing anything change on your Neopixel strip, make sure
you have show() at least somewhere otherwise your updates won’t be
shown.






Example

"""
    neopixel_random.py

    Repeatedly displays random colours onto the LED strip.
    This example requires a strip of 8 Neopixels (WS2812) connected to pin0.

"""
from microbit import *
import neopixel
from random import randint

# Setup the Neopixel strip on pin0 with a length of 8 pixels
np = neopixel.NeoPixel(pin0, 8)

while True:
    #Iterate over each LED in the strip

    for pixel_id in range(0, len(np)):
        red = randint(0, 60)
        green = randint(0, 60)
        blue = randint(0, 60)

        # Assign the current LED a random red, green and blue value between 0 and 60
        np[pixel_id] = (red, green, blue)

        # Display the current pixel data on the Neopixel strip
        np.show()
        sleep(100)











          

      

      

    

  

    
      
          
            
  
The os  Module

MicroPython contains an os module based upon the os module in the
Python standard library. It’s used for accessing what would traditionally be
termed as operating system dependent functionality. Since there is no operating
system in MicroPython the module provides functions relating to the management
of the simple on-device persistent file system and information about the
current system.

To access this module you need to:

import os





We assume you have done this for the examples below.


Functions


	
os.listdir()

	Returns a list of the names of all the files contained within the local
persistent on-device file system.






	
os.remove(filename)

	Removes (deletes) the file named in the argument filename. If the file
does not exist an OSError exception will occur.






	
os.size(filename)

	Returns the size, in bytes, of the file named in the argument filename.
If the file does not exist an OSError exception will occur.






	
os.uname()

	Returns information identifying the current operating system. The return
value is an object with five attributes:


	sysname - operating system name


	nodename - name of machine on network (implementation-defined)


	release - operating system release


	version - operating system version


	machine - hardware identifier









Note

There is no underlying operating system in MicroPython. As a result the
information returned by the uname function is mostly useful for
versioning details.









          

      

      

    

  

    
      
          
            
  
Input/Output Pins

The pins are your board’s way to communicate with external devices connected to
it. There are 19 pins for your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

For example, the script below will change the display on the micro:bit
depending upon the digital reading on pin 0:

from microbit import *


while True:
    if pin0.read_digital():
        display.show(Image.HAPPY)
    else:
        display.show(Image.SAD)






Pin Functions

[image: _images/pinout.png]
Those pins are available as attributes on the microbit
module:microbit.pin0 - microbit.pin20.








	Pin

	Type

	Function





	0

	Touch

	Pad 0



	1

	Touch

	Pad 1



	2

	Touch

	Pad 2



	3

	Analog

	Column 1



	4

	Analog

	Column 2



	5

	Digital

	Button A



	6

	Digital

	Row 2



	7

	Digital

	Row 1



	8

	Digital

	


	9

	Digital

	Row 3



	10

	Analog

	Column 3



	11

	Digital

	Button B



	12

	Digital

	


	13

	Digital

	SPI MOSI



	14

	Digital

	SPI MISO



	15

	Digital

	SPI SCK



	16

	Digital

	


	
	
	


	19

	Digital

	I2C SCL



	20

	Digital

	I2C SDA






The above table summarizes the pins available, their types (see below) and what
they are internally connected to.


Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier
can do it – by modulating the voltage on the pin. Those pins can only either
enable the full 3.3V output, or pull it down to 0V. However, it is still
possible to control the brightness of LEDs or speed of an electric motor, by
switching that voltage on and off very fast, and controlling how long it is on
and how long it is off. This technique is called Pulse-Width Modulation (PWM),
and that’s what the write_analog method below does.

[image: _images/pwm.png]
Above you can see the diagrams of three different PWM signals. All of them have
the same period (and thus frequency), but they have different duty cycles.

The first one would be generated by write_analog(511), as it has exactly
50% duty – the power is on half of the time, and off half of the time. The
result of that is that the total energy of this signal is the same, as if it
was 1.65V instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with
write_analog(255). It has similar effect as if 0.825V was being output on
that pin.

The third signal has 75% duty cycle, and can be generated with
write_analog(767). It has three times as much energy, as the second signal,
and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia
by themselves, or LEDs, which blink too fast for the human eye to see the
difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like
the very old computer games – mostly because those games also only could do
that.






Classes

There are three kinds of pins, differing in what is available for them. They
are represented by the classes listed below. Note that they form a hierarchy,
so that each class has all the functionality of the previous class, and adds
its own to that.


Note

Those classes are not actually available for the user, you can’t create
new instances of them. You can only use the instances already provided,
representing the physical pins on your board.




	
class microbit.MicroBitDigitalPin

	
	
read_digital()

	Return 1 if the pin is high, and 0 if it’s low.






	
write_digital(value)

	Set the pin to high if value is 1, or to low, if it is 0.










	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).






	
write_analog(value)

	Output a PWM signal on the pin, with the duty cycle proportional to
the provided value. The value may be either an integer or a
floating point number between 0 (0% duty cycle) and 1023 (100% duty).






	
set_analog_period(period)

	Set the period of the PWM signal being output to period in
milliseconds. The minimum valid value is 1ms.






	
set_analog_period_microseconds(period)

	Set the period of the PWM signal being output to period in
microseconds. The minimum valid value is 256µs.










	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).










	
class microbit.MicroBitTouchPin

	
	
is_touched()

	Return True if the pin is being touched with a finger, otherwise
return False.

This test is done by measuring how much resistance there is between the
pin and ground.  A low resistance gives a reading of True.  To get
a reliable reading using a finger you may need to touch the ground pin
with another part of your body, for example your other hand.









The pull mode for a pin is automatically configured when the pin changes to an
input mode. Input modes are when you call read_analog / read_digital /
is_touched. The default pull mode for these is, respectively, NO_PULL,
PULL_DOWN, PULL_UP. Calling set_pull will configure the pin to be
in read_digital mode with the given pull mode.


Note

The micro:bit has external weak (10M) pull-ups fitted on pins
0, 1 and 2 only, in order for the touch sensing to work.

There are also external (10k) pull-ups fitted on pins 5 and 11, in order
for buttons A and B to work.

GPIO pins are also used for the display. 6 of these are routed to the
edge connector at 3, 4, 6, 7, 9. and 10. If you want to use these pins
for another purpose, you may need to turn the display off [https://microbit-micropython.readthedocs.io/en/latest/display.html#microbit.display.off].

See the edge connector data sheet [http://tech.microbit.org/hardware/edgeconnector_ds].









          

      

      

    

  

    
      
          
            
  
Radio

The radio module allows devices to work together via simple wireless
networks.

The radio module is conceptually very simple:


	Broadcast messages are of a certain configurable length (up to 251 bytes).


	Messages received are read from a queue of configurable size (the larger the queue the more RAM is used). If the queue is full, new messages are ignored. Reading a message removes it from the queue.


	Messages are broadcast and received on a preselected channel (numbered 0-83).


	Broadcasts are at a certain level of power - more power means more range.


	Messages are filtered by address (like a house number) and group (like a named recipient at the specified address).


	The rate of throughput can be one of three pre-determined settings.


	Send and receive bytes to work with arbitrary data.


	Use receive_full to obtain full details about an incoming message: the data, receiving signal strength, and a microsecond timestamp when the message arrived.


	As a convenience for children, it’s easy to send and receive messages as strings.


	The default configuration is both sensible and compatible with other platforms that target the BBC micro:bit.




To access this module you need to:

import radio





We assume you have done this for the examples below.


Constants


	
radio.RATE_250KBIT

	Constant used to indicate a throughput of 256 Kbit a second.






	
radio.RATE_1MBIT

	Constant used to indicate a throughput of 1 MBit a second.






	
radio.RATE_2MBIT

	Constant used to indicate a throughput of 2 MBit a second.








Functions


	
radio.on()

	Turns the radio on. This needs to be explicitly called since the radio
draws power and takes up memory that you may otherwise need.






	
radio.off()

	Turns off the radio, thus saving power and memory.






	
radio.config(**kwargs)

	Configures various keyword based settings relating to the radio. The
available settings and their sensible default values are listed below.

The length (default=32) defines the maximum length, in bytes, of a
message sent via the radio. It can be up to 251 bytes long (254 - 3 bytes
for S0, LENGTH and S1 preamble).

The queue (default=3) specifies the number of messages that can be
stored on the incoming message queue. If there are no spaces left on the
queue for incoming messages, then the incoming message is dropped.

The channel (default=7) can be an integer value from 0 to 83
(inclusive) that defines an arbitrary “channel” to which the radio is
tuned. Messages will be sent via this channel and only messages received
via this channel will be put onto the incoming message queue. Each step is
1MHz wide, based at 2400MHz.

The power (default=6) is an integer value from 0 to 7 (inclusive) to
indicate the strength of signal used when broadcasting a message. The
higher the value the stronger the signal, but the more power is consumed
by the device. The numbering translates to positions in the following list
of dBm (decibel milliwatt) values: -30, -20, -16, -12, -8, -4, 0, 4.

The address (default=0x75626974) is an arbitrary name, expressed as a
32-bit address, that’s used to filter incoming packets at the hardware
level, keeping only those that match the address you set. The default used
by other micro:bit related platforms is the default setting used here.

The group (default=0) is an 8-bit value (0-255) used with the
address when filtering messages. Conceptually, “address” is like a
house/office address and “group” is like the person at that address to
which you want to send your message.

The data_rate (default=radio.RATE_1MBIT) indicates the speed at which
data throughput takes place. Can be one of the following contants defined
in the radio module : RATE_250KBIT, RATE_1MBIT or
RATE_2MBIT.

If config is not called then the defaults described above are assumed.






	
radio.reset()

	Reset the settings to their default values (as listed in the documentation
for the config function above).






Note

None of the following send or receive methods will work until the radio is
turned on.




	
radio.send_bytes(message)

	Sends a message containing bytes.






	
radio.receive_bytes()

	Receive the next incoming message on the message queue. Returns None if
there are no pending messages. Messages are returned as bytes.






	
radio.receive_bytes_into(buffer)

	Receive the next incoming message on the message queue. Copies the message
into buffer, trimming the end of the message if necessary.
Returns None if there are no pending messages, otherwise it returns the length
of the message (which might be more than the length of the buffer).






	
radio.send(message)

	Sends a message string. This is the equivalent of
send_bytes(bytes(message, 'utf8')) but with b'\x01\x00\x01'
prepended to the front (to make it compatible with other platforms that
target the micro:bit).






	
radio.receive()

	Works in exactly the same way as receive_bytes but returns
whatever was sent.

Currently, it’s equivalent to str(receive_bytes(), 'utf8') but with a
check that the the first three bytes are b'\x01\x00\x01' (to make it
compatible with other platforms that may target the micro:bit). It strips
the prepended bytes before converting to a string.

A ValueError exception is raised if conversion to string fails.






	
radio.receive_full()

	Returns a tuple containing three values representing the next incoming
message on the message queue. If there are no pending messages then
None is returned.

The three values in the tuple represent:


	the next incoming message on the message queue as bytes.


	the RSSI (signal strength): a value between 0 (strongest) and -255 (weakest) as measured in dBm.


	a microsecond timestamp: the value returned by time.ticks_us() when the message was received.




For example:

details = radio.receive_full()
if details:
    msg, rssi, timestamp = details





This function is useful for providing information needed for triangulation
and/or triliteration with other micro:bit devices.






Examples

# A micro:bit Firefly.
# By Nicholas H.Tollervey. Released to the public domain.
import radio
import random
from microbit import display, Image, button_a, sleep

# Create the "flash" animation frames. Can you work out how it's done?
flash = [Image().invert()*(i/9) for i in range(9, -1, -1)]

# The radio won't work unless it's switched on.
radio.on()

# Event loop.
while True:
    # Button A sends a "flash" message.
    if button_a.was_pressed():
        radio.send('flash')  # a-ha
    # Read any incoming messages.
    incoming = radio.receive()
    if incoming == 'flash':
        # If there's an incoming "flash" message display
        # the firefly flash animation after a random short
        # pause.
        sleep(random.randint(50, 350))
        display.show(flash, delay=100, wait=False)
        # Randomly re-broadcast the flash message after a
        # slight delay.
        if random.randint(0, 9) == 0:
            sleep(500)
            radio.send('flash')  # a-ha













          

      

      

    

  

    
      
          
            
  
Random Number Generation

This module is based upon the random module in the Python standard library.
It contains functions for generating random behaviour.

To access this module you need to:

import random





We assume you have done this for the examples below.


Functions


	
random.getrandbits(n)

	Returns an integer with n random bits.






Warning

Because the underlying generator function returns at most 30 bits, n
may only be a value between 1-30 (inclusive).




	
random.seed(n)

	Initialize the random number generator with a known integer n. This
will give you reproducibly deterministic randomness from a given starting
state (n).






	
random.randint(a, b)

	Return a random integer N such that a <= N <= b. Alias for
randrange(a, b+1).






	
random.randrange(stop)

	Return a randomly selected integer between zero and up to (but not
including) stop.






	
random.randrange(start, stop)

	Return a randomly selected integer from range(start, stop).






	
random.randrange(start, stop, step)

	Return a randomly selected element from range(start, stop, step).






	
random.choice(seq)

	Return a random element from the non-empty sequence seq. If seq is
empty, raises IndexError.






	
random.random()

	Return the next random floating point number in the range [0.0, 1.0)






	
random.uniform(a, b)

	Return a random floating point number N such that a <= N <= b
for a <= b and b <= N <= a for b < a.











          

      

      

    

  

    
      
          
            
  
Speech


Warning

WARNING! This is still work in progress; we reserve the right to change this API as development continues.

The quality of the speech is not great, merely “good enough”. Given the
constraints of the device you may encounter memory errors and / or
unexpected extra sounds during playback. It’s early days and we’re
improving the code for the speech synthesiser all the time. Bug reports
and pull requests are most welcome.



This module makes microbit talk, sing and make other speech like sounds
provided that you connect a speaker to your board as shown below:

[image: _images/speech.png]

Note

This work is based upon the amazing reverse engineering efforts of
Sebastian Macke based upon an old text-to-speech (TTS) program called SAM
(Software Automated Mouth) originally released in 1982 for the
Commodore 64. The result is a small C library that we have adopted and
adapted for the micro:bit. You can find out more from
his homepage [http://simulationcorner.net/index.php?page=sam]. Much of
the information in this document was gleaned from the original user’s
manual which can be found
here [http://www.apple-iigs.info/newdoc/sam.pdf].



The speech synthesiser can produce around 2.5 seconds worth of sound from up to
255 characters of textual input.

To access this module you need to:

import speech





We assume you have done this for the examples below.


Functions


	
speech.translate(words)

	Given English words in the string words, return a string containing
a best guess at the appropriate phonemes to pronounce. The output is
generated from this
text to phoneme translation table [https://github.com/s-macke/SAM/wiki/Text-to-phoneme-translation-table].

This function should be used to generate a first approximation of phonemes
that can be further hand-edited to improve accuracy, inflection and
emphasis.






	
speech.pronounce(phonemes, *, pitch=64, speed=72, mouth=128, throat=128)

	Pronounce the phonemes in the string phonemes. See below for details of
how to use phonemes to finely control the output of the speech synthesiser.
Override the optional pitch, speed, mouth and throat settings to change the
timbre (quality) of the voice.






	
speech.say(words, *, pitch=64, speed=72, mouth=128, throat=128)

	Say the English words in the string words. The result is semi-accurate
for English. Override the optional pitch, speed, mouth and throat
settings to change the timbre (quality) of the voice. This is a short-hand
equivalent of: speech.pronounce(speech.translate(words))






	
speech.sing(phonemes, *, pitch=64, speed=72, mouth=128, throat=128)

	Sing the phonemes contained in the string phonemes. Changing the pitch
and duration of the note is described below. Override the optional pitch,
speed, mouth and throat settings to change the timbre (quality) of the
voice.








Punctuation

Punctuation is used to alter the delivery of speech. The synthesiser
understands four punctuation marks: hyphen, comma, full-stop and question mark.

The hyphen (-) marks clause boundaries by inserting a short pause in the
speech.

The comma (,) marks phrase boundaries and inserts a pause of approximately
double that of the hyphen.

The full-stop (.) and question mark (?) end sentences.

The full-stop inserts a pause and causes the pitch to fall.

The question mark also inserts a pause but causes the pitch to rise. This works
well with yes/no questions such as, “are we home yet?” rather than more complex
questions such as “why are we going home?”. In the latter case, use a
full-stop.




Timbre

The timbre of a sound is the quality of the sound. It’s the difference between
the voice of a DALEK and the voice of a human (for example). To control the
timbre change the numeric settings of the pitch, speed, mouth and
throat arguments.

The pitch (how high or low the voice sounds) and speed (how quickly the speech
is delivered) settings are rather obvious and generally fall into the following
categories:

Pitch:


	0-20 impractical


	20-30 very high


	30-40 high


	40-50 high normal


	50-70 normal


	70-80 low normal


	80-90 low


	90-255 very low




(The default is 64)

Speed:


	0-20 impractical


	20-40 very fast


	40-60 fast


	60-70 fast conversational


	70-75 normal conversational


	75-90 narrative


	90-100 slow


	100-225 very slow




(The default is 72)

The mouth and throat values are a little harder to explain and the following
descriptions are based upon our aural impressions of speech produced as the
value of each setting is changed.

For mouth, the lower the number the more it sounds like the speaker is talking
without moving their lips. In contrast, higher numbers (up to 255) make it
sound like the speech is enunciated with exagerated mouth movement.

For throat, the lower the number the more relaxed the speaker sounds. In
contrast, the higher the number, the more tense the tone of voice becomes.

The important thing is to experiment and adjust the settings until you get the
effect you desire.

To get you started here are some examples:

speech.say("I am a little robot",  speed=92, pitch=60, throat=190, mouth=190)
speech.say("I am an elf", speed=72, pitch=64, throat=110, mouth=160)
speech.say("I am a news presenter", speed=82, pitch=72, throat=110, mouth=105)
speech.say("I am an old lady", speed=82, pitch=32, throat=145, mouth=145)
speech.say("I am E.T.", speed=100, pitch=64, throat=150, mouth=200)
speech.say("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)








Phonemes

The say function makes it easy to produce speech - but often it’s not
accurate. To make sure the speech synthesiser pronounces things
exactly how you’d like, you need to use phonemes: the smallest
perceptually distinct units of sound that can be used to distinguish different
words. Essentially, they are the building-block sounds of speech.

The pronounce function takes a string containing a simplified and readable
version of the International Phonetic Alphabet [https://en.wikipedia.org/wiki/International_Phonetic_Alphabet] and optional annotations to indicate
inflection and emphasis.

The advantage of using phonemes is that you don’t have to know how to spell!
Rather, you only have to know how to say the word in order to spell it
phonetically.

The table below lists the phonemes understood by the synthesiser.


Note

The table contains the phoneme as characters, and an example word. The
example words have the sound of the phoneme (in parenthesis), but not
necessarily the same letters.

Often overlooked: the symbol for the “H” sound is /H. A glottal stop
is a forced stoppage of sound.



SIMPLE VOWELS                          VOICED CONSONANTS
IY           f(ee)t                    R        (r)ed
IH           p(i)n                     L        a(ll)ow
EH           b(e)g                     W        a(w)ay
AE           S(a)m                     W        (wh)ale
AA           p(o)t                     Y        (y)ou
AH           b(u)dget                  M        Sa(m)
AO           t(al)k                    N        ma(n)
OH           c(o)ne                    NX       so(ng)
UH           b(oo)k                    B        (b)ad
UX           l(oo)t                    D        (d)og
ER           b(ir)d                    G        a(g)ain
AX           gall(o)n                  J        (j)u(dg)e
IX           dig(i)t                   Z        (z)oo
                                       ZH       plea(s)ure
DIPHTHONGS                             V        se(v)en
EY           m(a)de                    DH       (th)en
AY           h(igh)
OY           b(oy)
AW           h(ow)                     UNVOICED CONSONANTS
OW           sl(ow)                    S         (S)am
UW           cr(ew)                    SH        fi(sh)
                                       F         (f)ish
                                       TH        (th)in
SPECIAL PHONEMES                       P         (p)oke
UL           sett(le) (=AXL)           T         (t)alk
UM           astron(om)y (=AXM)        K         (c)ake
UN           functi(on) (=AXN)         CH        spee(ch)
Q            kitt-en (glottal stop)    /H        a(h)ead





The following non-standard symbols are also available to the user:

YX           diphthong ending (weaker version of Y)
WX           diphthong ending (weaker version of W)
RX           R after a vowel (smooth version of R)
LX           L after a vowel (smooth version of L)
/X           H before a non-front vowel or consonant - as in (wh)o
DX           T as in pi(t)y (weaker version of T)





Here are some seldom used phoneme combinations (and suggested alternatives):

PHONEME        YOU PROBABLY WANT:     UNLESS IT SPLITS SYLLABLES LIKE:
COMBINATION
GS             GZ e.g. ba(gs)         bu(gs)pray
BS             BZ e.g. slo(bz)        o(bsc)ene
DS             DZ e.g. su(ds)         Hu(ds)son
PZ             PS e.g. sla(ps)        -----
TZ             TS e.g. cur(ts)y       -----
KZ             KS e.g. fi(x)          -----
NG             NXG e.g. singing       i(ng)rate
NK             NXK e.g. bank          Su(nk)ist





If you use anything other than the phonemes described above, a ValueError
exception will be raised. Pass in the phonemes as a string like this:

speech.pronounce("/HEHLOW")  # "Hello"





The phonemes are classified into two broad groups: vowels and consonants.

Vowels are further subdivided into simple vowels and diphthongs. Simple vowels
don’t change their sound as you say them whereas diphthongs start with one
sound and end with another. For example, when you say the word “oil” the “oi”
vowel starts with an “oh” sound but changes to an “ee” sound.

Consonants are also subdivided into two groups: voiced and unvoiced. Voiced
consonants require the speaker to use their vocal chords to produce the sound.
For example, consonants like “L”, “N” and “Z” are voiced. Unvoiced consonants
are produced by rushing air, such as “P”, “T” and “SH”.

Once you get used to it, the phoneme system is easy. To begin with some
spellings may seem tricky (for example, “adventure” has a “CH” in it) but the
rule is to write what you say, not what you spell. Experimentation is the best
way to resolve problematic words.

It’s also important that speech sounds natural and understandable. To help
with improving the quality of spoken output it’s often good to use the built-in
stress system to add inflection or emphasis.

There are eight stress markers indicated by the numbers 1 - 8. Simply
insert the required number after the vowel to be stressed. For example, the
lack of expression of “/HEHLOW” is much improved (and friendlier) when
spelled out “/HEH3LOW”.

It’s also possible to change the meaning of words through the way they are
stressed. Consider the phrase “Why should I walk to the store?”. It could be
pronounced in several different ways:

# You need a reason to do it.
speech.pronounce("WAY2 SHUH7D AY WAO5K TUX DHAH STOH5R.")
# You are reluctant to go.
speech.pronounce("WAY7 SHUH2D AY WAO7K TUX DHAH STOH5R.")
# You want someone else to do it.
speech.pronounce("WAY5 SHUH7D AY2 WAO7K TUX DHAH STOHR.")
# You'd rather drive.
speech.pronounce("WAY5 SHUHD AY7 WAO2K TUX7 DHAH STOHR.")
# You want to walk somewhere else.
speech.pronounce("WAY5 SHUHD AY WAO5K TUX DHAH STOH2OH7R.")





Put simply, different stresses in the speech create a more expressive tone of
voice.

They work by raising or lowering pitch and elongating the associated vowel
sound depending on the number you give:


	very emotional stress


	very emphatic stress


	rather strong stress


	ordinary stress


	tight stress


	neutral (no pitch change) stress


	pitch-dropping stress


	extreme pitch-dropping stress




The smaller the number, the more extreme the emphasis will be. However, such
stress markers will help pronounce difficult words correctly. For example, if
a syllable is not enunciated sufficiently, put in a neutral stress marker.

It’s also possible to elongate words with stress markers:

speech.pronounce("/HEH5EH4EH3EH2EH2EH3EH4EH5EHLP.”)








Singing

It’s possible to make MicroPython sing phonemes.

This is done by annotating a pitch related number onto a phoneme. The lower the
number, the higher the pitch. Numbers roughly translate into musical notes as
shown in the diagram below:

[image: _images/speech-pitch.png]
Annotations work by pre-pending a hash (#) sign and the pitch number in
front of the phoneme. The pitch will remain the same until a new annotation
is given. For example, make MicroPython sing a scale like this:

solfa = [
    "#115DOWWWWWW",   # Doh
    "#103REYYYYYY",   # Re
    "#94MIYYYYYY",    # Mi
    "#88FAOAOAOAOR",  # Fa
    "#78SOHWWWWW",    # Soh
    "#70LAOAOAOAOR",  # La
    "#62TIYYYYYY",    # Ti
    "#58DOWWWWWW",    # Doh
]
song = ''.join(solfa)
speech.sing(song, speed=100)





In order to sing a note for a certain duration extend the
note by repeating vowel or voiced consonant phonemes (as demonstrated in
the example above). Beware diphthongs - to extend them you need to break them
into their component parts. For example, “OY” can be extended with
“OHOHIYIYIY”.

Experimentation, listening carefully and adjusting is the only sure way to work
out how many times to repeat a phoneme so the note lasts for the desired
duration.




How Does it Work?

The original manual explains it well:


First, instead of recording the actual speech waveform, we only store the
frequency spectrums. By doing this, we save memory and pick up other
advantages. Second, we […] store some data about timing. These are
numbers pertaining to the duration of each phoneme under different
circumstances, and also some data on transition times so we can know how
to blend a phoneme into its neighbors. Third, we devise a system of rules
to deal with all this data and, much to our amazement, our computer is
babbling in no time.

—S.A.M. owner’s manual.




The output is piped through the functions provided by the audio module and,
hey presto, we have a talking micro:bit.




Example

import speech
from microbit import sleep

# The say method attempts to convert English into phonemes.
speech.say("I can sing!")
sleep(1000)
speech.say("Listen to me!")
sleep(1000)

# Clearing the throat requires the use of phonemes. Changing
# the pitch and speed also helps create the right effect.
speech.pronounce("AEAE/HAEMM", pitch=200, speed=100)  # Ahem
sleep(1000)

# Singing requires a phoneme with an annotated pitch for each syllable.
solfa = [
    "#115DOWWWWWW",   # Doh
    "#103REYYYYYY",   # Re
    "#94MIYYYYYY",    # Mi
    "#88FAOAOAOAOR",  # Fa
    "#78SOHWWWWW",    # Soh
    "#70LAOAOAOAOR",  # La
    "#62TIYYYYYY",    # Ti
    "#58DOWWWWWW",    # Doh
]

# Sing the scale ascending in pitch.
song = ''.join(solfa)
speech.sing(song, speed=100)
# Reverse the list of syllables.
solfa.reverse()
song = ''.join(solfa)
# Sing the scale descending in pitch.
speech.sing(song, speed=100)











          

      

      

    

  

    
      
          
            
  
SPI

The spi module lets you talk to a device connected to your board using
a serial peripheral interface (SPI) bus. SPI uses a so-called master-slave
architecture with a single master. You will need to specify the connections
for three signals:


	SCLK : Serial Clock (output from master).


	MOSI : Master Output, Slave Input (output from master).


	MISO : Master Input, Slave Output (output from slave).





Functions


	
microbit.spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13, mosi=pin15, miso=pin14)

	Initialize SPI communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only
bits=8 is supported. However, this may change in the future.

The mode determines the combination of clock polarity and phase
according to the following convention, with polarity as the high order bit
and phase as the low order bit:








	SPI Mode

	Polarity (CPOL)

	Phase (CPHA)





	0

	0

	0



	1

	0

	1



	2

	1

	0



	3

	1

	1






Polarity (aka CPOL) 0 means that the clock is at logic value 0 when idle
and goes high (logic value 1) when active; polarity 1 means the clock is
at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock,
and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for
each type of signal.






	
spi.read(nbytes)

	Read at most nbytes. Returns what was read.






	
spi.write(buffer)

	Write the buffer of bytes to the bus.






	
spi.write_readinto(out, in)

	Write the out buffer to the bus and read any response into the in
buffer. The length of the buffers should be the same. The buffers can be
the same object.











          

      

      

    

  

    
      
          
            
  
UART

The uart module lets you talk to a device connected to your board using
a serial interface.


Functions


	
microbit.uart.init(baudrate=9600, bits=8, parity=None, stop=1, *, tx=None, rx=None)

	Initialize serial communication with the specified parameters on the
specified tx and rx pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.


Warning

Initializing the UART on external pins will cause the Python console on
USB to become unaccessible, as it uses the same hardware. To bring the
console back you must reinitialize the UART without passing anything for
tx or rx (or passing None to these arguments).  This means
that calling uart.init(115200) is enough to restore the Python console.



The baudrate defines the speed of communication. Common baud
rates include:



	9600


	14400


	19200


	28800


	38400


	57600


	115200







The bits defines the size of bytes being transmitted, and the board
only supports 8. The parity parameter defines how parity is checked,
and it can be None, microbit.uart.ODD or microbit.uart.EVEN.
The stop parameter tells the number of stop bits, and has to be 1 for
this board.

If tx and rx are not specified then the internal USB-UART TX/RX pins
are used which connect to the USB serial converter on the micro:bit, thus
connecting the UART to your PC.  You can specify any other pins you want by
passing the desired pin objects to the tx and rx parameters.


Note

When connecting the device, make sure you “cross” the wires – the TX
pin on your board needs to be connected with the RX pin on the device,
and the RX pin – with the TX pin on the device. Also make sure the
ground pins of both devices are connected.








	
uart.any()

	Return True if any data is waiting, else False.






	
uart.read([nbytes])

	Read bytes.  If nbytes is specified then read at most that many
bytes, otherwise read as many bytes as possible.

Return value: a bytes object or None on timeout.

A bytes object contains a sequence of bytes. Because
ASCII [https://en.wikipedia.org/wiki/ASCII] characters can fit in
single bytes this type of object is often used to represent simple text
and offers methods to manipulate it as such, e.g. you can display the text
using the print() function.

You can also convert this object into a string object, and if there are
non-ASCII characters present the encoding can be specified:

msg_bytes = uart.read()
msg_str = str(msg, 'UTF-8')






Note

The timeout for all UART reads depends on the baudrate and is otherwise
not changeable via Python. The timeout, in milliseconds, is given by:
microbit_uart_timeout_char = 13000 / baudrate + 1




Note

The internal UART RX buffer is 64 bytes, so make sure data is read
before the buffer is full or some of the data might be lost.




Warning

Receiving 0x03 will stop your program by raising a Keyboard
Interrupt. You can enable or disable this using
micropython.kbd_intr().








	
uart.readall()

	Removed since version 1.0.

Instead, use uart.read() with no arguments, which will read as much data
as possible.






	
uart.readinto(buf[, nbytes])

	Read bytes into the buf.  If nbytes is specified then read at most
that many bytes.  Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.






	
uart.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is
included in the returned bytes.






	
uart.write(buf)

	Write the buffer to the bus, it can be a bytes object or a string:

uart.write('hello world')
uart.write(b'hello world')
uart.write(bytes([1, 2, 3]))





Return value: number of bytes written or None on timeout.











          

      

      

    

  

    
      
          
            
  
utime

The utime module provides functions for getting the current time and date,
measuring time intervals, and for delays.


Note

The utime module is a MicroPython implementation of the standard Python
time module. It can be imported using both import utime and
import time, but the module is the same.




Functions


	
utime.sleep(seconds)

	Sleep for the given number of seconds. You can use a floating-point number
to sleep for a fractional number of seconds, or use the
utime.sleep_ms() and utime.sleep_us() functions.






	
utime.sleep_ms(ms)

	Delay for given number of milliseconds, should be positive or 0.






	
utime.sleep_us(us)

	Delay for given number of microseconds, should be positive or 0.






	
utime.ticks_ms()

	Returns an increasing millisecond counter with an arbitrary reference point,
that wraps around after some value.






	
utime.ticks_us()

	Just like utime.ticks_ms() above, but in microseconds.






	
utime.ticks_add(ticks, delta)

	Offset ticks value by a given number, which can be either positive or
negative. Given a ticks value, this function allows to calculate ticks
value delta ticks before or after it, following modular-arithmetic
definition of tick values.

Example:

# Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

# Calculate deadline for operation and test for it
deadline = ticks_add(time.ticks_ms(), 200)
while ticks_diff(deadline, time.ticks_ms()) > 0:
    do_a_little_of_something()

# Find out TICKS_MAX used by this port
print(ticks_add(0, -1))










	
utime.ticks_diff(ticks1, ticks2)

	Measure ticks difference between values returned from
utime.ticks_ms() or ticks_us() functions, as a signed value
which may wrap around.

The argument order is the same as for subtraction operator,
ticks_diff(ticks1, ticks2) has the same meaning as ticks1 - ticks2.

utime.ticks_diff() is designed to accommodate various usage
patterns, among them:

Polling with timeout. In this case, the order of events is known, and you
will deal only with positive results of utime.ticks_diff():

# Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:
    if time.ticks_diff(time.ticks_us(), start) > 500:
        raise TimeoutError





Scheduling events. In this case, utime.ticks_diff() result may be
negative if an event is overdue:

# This code snippet is not optimized
now = time.ticks_ms()
scheduled_time = task.scheduled_time()
if ticks_diff(scheduled_time, now) > 0:
    print("Too early, let's nap")
    sleep_ms(ticks_diff(scheduled_time, now))
    task.run()
elif ticks_diff(scheduled_time, now) == 0:
    print("Right at time!")
    task.run()
elif ticks_diff(scheduled_time, now) < 0:
    print("Oops, running late, tell task to run faster!")
    task.run(run_faster=true)















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a | 
   m | 
   n | 
   o | 
   r | 
   s | 
   u
   


   
     		 	

     		
       a	

     
       	
       	
       audio	
       

     		 	

     		
       m	

     
       	
       	
       machine	
       

     
       	[image: -]
       	
       microbit	
       

     
       	
       	   
       microbit.accelerometer	
       

     
       	
       	   
       microbit.compass	
       

     
       	
       	   
       microbit.display	
       

     
       	
       	   
       microbit.i2c	
       

     
       	
       	   
       microbit.spi	
       

     
       	
       	   
       microbit.uart	
       

     
       	
       	
       micropython	
       

     
       	
       	
       music	
       

     		 	

     		
       n	

     
       	
       	
       neopixel	
       

     		 	

     		
       o	

     
       	
       	
       os	
       

     		 	

     		
       r	

     
       	
       	
       radio	
       

     
       	
       	
       random	
       

     		 	

     		
       s	

     
       	
       	
       speech	
       

     		 	

     		
       u	

     
       	
       	
       utime	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 


A


  	
      	any() (microbit.uart.uart method)


  

  	
      	audio (module)


      	AudioFrame (class in audio)


  





B


  	
      	blit() (microbit.Image method)


      	Button (built-in class)


  

  	
      	button_a


      	button_b


      	BytesIO (built-in class)


  





C


  	
      	calibrate() (in module microbit.compass)


      	choice() (in module random)


      	clear() (in module microbit.display)

      
        	(neopixel.NeoPixel method)


      


      	clear_calibration() (in module microbit.compass)


  

  	
      	close() (BytesIO method)


      	config() (in module radio)


      	copy() (microbit.Image method)


      	crop() (microbit.Image method)


      	current_gesture() (in module microbit.accelerometer)


  





D


  	
      	disable_irq() (machine.machine method)


  





E


  	
      	enable_irq() (machine.machine method)


  





F


  	
      	fill() (microbit.Image method)


  

  	
      	freq() (machine.machine method)


  





G


  	
      	get_field_strength() (in module microbit.compass)


      	get_gestures() (in module microbit.accelerometer)


      	get_pixel() (in module microbit.display)

      
        	(microbit.Image method)


      


      	get_presses() (Button method)


      	get_tempo() (in module music)


      	get_values() (in module microbit.accelerometer)


  

  	
      	get_x() (in module microbit.accelerometer)

      
        	(in module microbit.compass)


      


      	get_y() (in module microbit.accelerometer)

      
        	(in module microbit.compass)


      


      	get_z() (in module microbit.accelerometer)

      
        	(in module microbit.compass)


      


      	getrandbits() (in module random)


  





H


  	
      	heading() (in module microbit.compass)


  

  	
      	height() (microbit.Image method)


  





I


  	
      	Image (class in microbit)


      	init() (in module microbit.i2c)

      
        	(in module microbit.spi)


        	(in module microbit.uart)


      


      	invert() (microbit.Image method)


  

  	
      	is_calibrated() (in module microbit.compass)


      	is_gesture() (in module microbit.accelerometer)


      	is_on() (in module microbit.display)


      	is_pressed() (Button method)


      	is_touched() (microbit.MicroBitTouchPin method)


  





L


  	
      	listdir() (in module os)


  





M


  	
      	machine (module)


      	microbit (module), [1], [2]


      	microbit.accelerometer (module)


      	microbit.compass (module)


      	microbit.display (module)


      	microbit.i2c (module)


      	microbit.spi (module)


      	microbit.uart (module)


      	MicroBitAnalogDigitalPin (class in microbit), [1]


      	MicroBitDigitalPin (class in microbit)


  

  	
      	MicroBitTouchPin (class in microbit)


      	micropython (module)


      	micropython.const() (in module micropython)


      	micropython.heap_lock() (in module micropython)


      	micropython.heap_unlock() (in module micropython)


      	micropython.kbd_intr() (in module micropython)


      	micropython.mem_info() (in module micropython)


      	micropython.opt_level() (in module micropython)


      	micropython.qstr_info() (in module micropython)


      	micropython.stack_use() (in module micropython)


      	music (module)


  





N


  	
      	name() (BytesIO method)


  

  	
      	NeoPixel (class in neopixel)


      	neopixel (module)


  





O


  	
      	off() (in module microbit.display)

      
        	(in module radio)


      


      	on() (in module microbit.display)

      
        	(in module radio)


      


  

  	
      	open() (built-in function)


      	os (module)


  





P


  	
      	panic() (in module microbit)


      	pitch() (in module music)


  

  	
      	play() (in module audio)

      
        	(in module music)


      


      	pronounce() (in module speech)


  





R


  	
      	radio (module)


      	randint() (in module random)


      	random (module)


      	random() (in module random)


      	randrange() (in module random), [1], [2]


      	RATE_1MBIT (in module radio)


      	RATE_250KBIT (in module radio)


      	RATE_2MBIT (in module radio)


      	read() (BytesIO method)

      
        	(in module microbit.i2c)


        	(microbit.spi.spi method)


        	(microbit.uart.uart method)


      


      	read_analog() (microbit.MicroBitAnalogDigitalPin method), [1]


      	read_digital() (microbit.MicroBitDigitalPin method)


      	read_light_level() (in module microbit.display)


  

  	
      	readall() (microbit.uart.uart method)


      	readinto() (BytesIO method)

      
        	(microbit.uart.uart method)


      


      	readline() (BytesIO method)

      
        	(microbit.uart.uart method)


      


      	receive() (in module radio)


      	receive_bytes() (in module radio)


      	receive_bytes_into() (in module radio)


      	receive_full() (in module radio)


      	remove() (in module os)


      	reset() (in module microbit)

      
        	(in module music)


        	(in module radio)


        	(machine.machine method)


      


      	running_time() (in module microbit)


  





S


  	
      	say() (in module speech)


      	scan() (in module microbit.i2c)


      	scroll() (in module microbit.display)


      	seed() (in module random)


      	send() (in module radio)


      	send_bytes() (in module radio)


      	set_analog_period() (microbit.MicroBitAnalogDigitalPin method)


      	set_analog_period_microseconds() (microbit.MicroBitAnalogDigitalPin method)


      	set_pixel() (in module microbit.display)

      
        	(microbit.Image method)


      


      	set_tempo() (in module music)


      	shift_down() (microbit.Image method)


  

  	
      	shift_left() (microbit.Image method)


      	shift_right() (microbit.Image method)


      	shift_up() (microbit.Image method)


      	show() (in module microbit.display), [1]

      
        	(neopixel.NeoPixel method)


      


      	sing() (in module speech)


      	size() (in module os)


      	sleep() (in module microbit)

      
        	(utime.utime method)


      


      	sleep_ms() (utime.utime method)


      	sleep_us() (utime.utime method)


      	speech (module)


      	stop() (in module music)


  





T


  	
      	temperature() (in module microbit)


      	TextIO (built-in class)


      	ticks_add() (utime.utime method)


      	ticks_diff() (utime.utime method)


  

  	
      	ticks_ms() (utime.utime method)


      	ticks_us() (utime.utime method)


      	time_pulse_us() (machine.machine method)


      	translate() (in module speech)


  





U


  	
      	uname() (in module os)


      	uniform() (in module random)


  

  	
      	unique_id() (machine.machine method)


      	utime (module)


  





W


  	
      	was_gesture() (in module microbit.accelerometer)


      	was_pressed() (Button method)


      	width() (microbit.Image method)


      	writable() (BytesIO method)


      	write() (BytesIO method)

      
        	(in module microbit.i2c)


        	(microbit.spi.spi method)


        	(microbit.uart.uart method)


      


  

  	
      	write_analog() (microbit.MicroBitAnalogDigitalPin method)


      	write_digital() (microbit.MicroBitDigitalPin method)


      	write_readinto() (microbit.spi.spi method)


  







          

      

      

    

  _images/blue-microbit.png





_images/comic.png
MicroPython was created by Damien.
w from microbit import *

# Edit your code here!

display.scroll(*Hello, worldt®)






_images/binary_count.gif
2

P

2

21





_images/dalek.jpg
RRAL

SHALL I COMPARE THEE
TO A SUMMERS DAY
FOR THOU ART MORE LOVELY
AND EXTERMINATE






_images/files.jpg





_images/fireflies.gif


