

BBC micro:bit MicroPython documentation

Welcome!

The BBC micro:bit is a small computing device for children. One of the
languages it understands is the popular Python programming langauge. The
version of Python that runs on the BBC micro:bit is called MicroPython.

This documentation includes lessons for teachers
and API documentation for developers (check out the index on the left). We hope
you enjoy developing for the BBC micro:bit using MicroPython.

[image: _images/comic.png]
To get involved with the community subscribe to the microbit@python.org
mailing list (https://mail.python.org/mailman/listinfo/microbit).

Note

This project is under active development. Please help other
developers by adding tips, how-tos, and Q&A to this document.
Thanks!

Projects related to MicroPython on the BBC micro:bit include:

	Mu [https://github.com/ntoll/mu] - a simple code editor for kids, teachers and beginner programmers. Probably the easiest way for people to program MicroPython on the BBC micro:bit.

	uFlash [http://uflash.readthedocs.org/en/latest/] - a command line tool for flashing raw Python scripts onto a BBC micro:bit.

Tutorials

	Introduction
	Hello, World!

	Images

	Buttons

	Input/Output

	Music

	Random

	Movement

	Gestures

	Direction

	Network

	Next Steps

	Hello, World!

	Images
	DIY Images

	Animation

	Buttons
	Event Loops

	Handling an Event

	Input/Output
	Ticklish Python

	Bleeps and Bloops

	Music
	Wolfgang Amadeus Microbit

	Sound Effects

	Random
	Random Numbers

	Seeds of Chaos

	Movement
	Musical Mayhem

	Gestures
	Magic-8

	Direction
	Compass

	Network
	Connection

	Signal

	Protocol

	Message

	Application

	The End Result

	Next Steps

API Reference

	micro:bit Micropython API
	The microbit module

	Microbit Module
	Functions

	Attributes

	Classes

	Modules

	Input/Output Pins
	Pin Functions

	Classes

	Music
	Musical Notation

	Functions

	Image
	Classes

	Attributes

	Operations

	Compass
	Functions

	Example

	Accelerometer
	Functions

	Buttons
	Attributes

	Classes

	Example

	Display
	Functions

	I²C
	Functions

	UART
	Functions

	SPI
	Functions

	Random Number Generation
	Functions

	NeoPixel
	Classes

	Operations

	Using Neopixels

	Example

	Bluetooth

Developer Guide

	Installation
	Dependencies

	Development Environment

	Installation Scenarios

	Next steps

	Flashing Firmware
	Building firmware

	Preparing firmware and a Python program

	Flashing to the micro:bit

	Accessing the REPL
	Serial communication

	Determining port

	Establishing communication with the micro:bit

	Developer FAQ

	Contributing
	Checklist

	Index

	Module Index

	Search Page

Introduction

Tutorials

	Hello, World!

	Images
	DIY Images

	Animation

	Buttons
	Event Loops

	Handling an Event

	Input/Output
	Ticklish Python

	Bleeps and Bloops

	Music
	Wolfgang Amadeus Microbit

	Sound Effects

	Random
	Random Numbers

	Seeds of Chaos

	Movement
	Musical Mayhem

	Gestures
	Magic-8

	Direction
	Compass

	Network
	Connection

	Signal

	Protocol

	Message

	Application

	The End Result

	Next Steps

Python is one of the world’s most popular [http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html] programming languages. Every day, without
realising, you probably use software written using Python. All sorts of
companies and organisations use Python for a diverse range of applications.
Google, NASA, Bank of America, Disney, CERN, YouTube, Mozilla, The Guardian -
the list goes on and covers all sectors of the economy, science and the arts.

For example, do you remember the announcement of the discovery of gravitational waves [http://www.bbc.co.uk/news/science-environment-35552207]? The instruments used to make the measurements were controlled with Python [https://www.reddit.com/r/IAmA/comments/45g8qu/we_are_the_ligo_scientific_collaboration_and_we/czxnlux].

Put simply, if you teach or learn Python, you are developing a highly valuable
skill that applies to all areas of human endeavour.

One such area is the BBC’s amazing micro:bit device. It runs a version of
Python called MicroPython that’s designed to run on small computers like the BBC
micro:bit. It’s a full implementation of Python 3 so when you move onto other
things (such as programming Python on a Raspberry Pi) you’ll use exactly the
same language.

MicroPython does not include all the standard code libraries that come with
“regular” Python. However, we have created a special microbit module in
MicroPython that lets you control the device.

Python and MicroPython are free software. Not only does this mean you don’t pay
anything to use Python, but you are also free to contribute back to the Python
community. This may be in the form of code, documentation, bug reports, running
a community group or writing tutorials (like this one). In fact, all the Python
related resources for the BBC micro:bit have been created by an international
team of volunteers working in their free time.

These lessons introduce MicroPython and the BBC
micro:bit in easy-to-follow steps. Feel free to adopt and adapt them for
classroom based lessons, or perhaps just follow them on your own at home.

You’ll have most success if you explore, experiment and play. You can’t break
a BBC micro:bit by writing incorrect code. Just dive in!

A word of warning: you will fail many times, and that is fine. Failure is
how good software developers learn. Those of us who work as software
developers have a lot of fun tracking down bugs and avoiding the repetition of
mistakes.

If in doubt, remember the Zen of MicroPython:

Code,
Hack it,
Less is more,
Keep it simple,
Small is beautiful,

Be brave! Break things! Learn and have fun!
Express yourself with MicroPython.

Happy hacking! :-)

Best of luck!

Hello, World!

The traditional way to start programming in a new language is to get your
computer to say, “Hello, World!”.

[image: ../_images/scroll-hello1.gif]
This is easy with MicroPython:

from microbit import *
display.scroll("Hello, World!")

Each line does something special. The first line:

from microbit import *

...tells MicroPython to get all the stuff it needs to work with the BBC
micro:bit. All this stuff is in a module called microbit (a module
is a library of pre-existing code). When you import something you’re telling
MicroPython that you want to use it, and * is Python’s way to say
everything. So, from microbit import * means, in English, “I want to be
able to use everything from the microbit code library”.

The second line:

display.scroll("Hello, World!")

...tells MicroPython to use the display to scroll the string of characters
“Hello, World!”. The display part of that line is an object from the
microbit module that represents the device’s physical display (we say
“object” instead of “thingy”, “whatsit” or “doodah”). We can tell the display
to do things with a full-stop . followed by what looks like a command (in
fact it’s something we call a method). In this case we’re using the
scroll method. Since scroll needs to know what characters to scroll
across the physical display we specify them between double quotes (")
within parenthesis ((and)). These are called the arguments. So,
display.scroll("Hello, World!") means, in English, “I want you to use the
display to scroll the text ‘Hello, World!’”. If a method doesn’t need any
arguments we make this clear by using empty parenthesis like this: ().

Copy the “Hello, World!” code into your editor and flash it onto the device.
Can you work out how to change the message? Can you make it say hello to you?
For example, I might make it say “Hello, Nicholas!”. Here’s a clue, you need to
change the scroll method’s argument.

Warning

It may not work. :-)

This is where things get fun and MicroPython tries to be helpful. If
it encounters an error it will scroll a helpful message on the micro:bit’s
display. If it can, it will tell you the line number for where the error
can be found.

Python expects you to type EXACTLY the right thing. So, for instance,
Microbit, microbit and microBit are all different things to
Python. If MicroPython complains about a NameError it’s probably
because you’ve typed something inaccurately. It’s like the difference
between referring to “Nicholas” and “Nicolas”. They’re two different people
but their names look very similar.

If MicroPython complains about a SyntaxError you’ve simply typed code
in a way that MicroPython can’t understand. Check you’re not missing any
special characters like " or :. It’s like putting. a full stop in
the middle of a sentence. It’s hard to understand exactly what you mean.

Images

MicroPython is about as good at art as you can be if the only thing you have is
a 5x5 grid of red LEDs (light emitting diodes - the things that light up on the
front of the device). MicroPython gives you quite a lot of control over the
display so you can create all sorts of interesting effects.

MicroPython comes with lots of built-in pictures to show on the display.
For example, to make the device appear happy you type:

from microbit import *
display.show(Image.HAPPY)

I suspect you can remember what the first line does. The second line uses the
display object to show a built-in image. The happy image we want to
display is a part of the Image object and called HAPPY. We tell
show to use it by putting it between the parenthesis ((and)).

[image: ../_images/happy.png]
Here’s a list of the built-in images:

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

There’s quite a lot! Why not modify the code that makes the micro:bit look
happy to see what some of the other built-in images look like? (Just replace
Image.HAPPY with one of the built-in images listed above.)

DIY Images

Of course, you want to make your own image to display on the micro:bit, right?

That’s easy.

Each LED pixel on the physical display can be set to one of ten values. If a
pixel is set to 0 (zero) then it’s off. It literally has zero brightness.
However, if it is set to 9 then it is at its brightest level. The values
1 to 8 represent the brightness levels between off (0) and full on
(9).

Armed with this information, it’s possible to create a new image like this:

from microbit import *

boat = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

display.show(boat)

(When run, the device should display an old-fashioned “Blue Peter” sailing ship
with the masts dimmer than the boat’s hull.)

Have you figured out how to draw a picture? Have you noticed that each line of
the physical display is represented by a line of numbers ending in : and
enclosed between " double quotes? Each number specifies a brightness.
There are five lines of five numbers so it’s possible to specify the individual
brightness for each of the five pixels on each of the five lines on the
physical display. That’s how to create a new image.

Simple!

In fact, you don’t need to write this over several lines. If you think you can
keep track of each line, you can rewrite it like this:

boat = Image("05050:05050:05050:99999:09990")

Animation

Static images are fun, but it’s even more fun to make them move. This is also
amazingly simple to do with MicroPython ~ just use a list of images!

Here is a shopping list:

Eggs
Bacon
Tomatoes

Here’s how you’d represent this list in Python:

shopping = ["Eggs", "Bacon", "Tomatoes"]

I’ve simply created a list called shopping and it contains three items.
Python knows it’s a list because it’s enclosed in square brackets ([and
]). Items in the list are separated by a comma (,) and in this instance
the items are three strings of characters: "Eggs", "Bacon" and
"Tomatoes". We know they are strings of characters because they’re enclosed
in quotation marks ".

You can store anything in a list with Python. Here’s a list of numbers:

primes = [2, 3, 5, 7, 11, 13, 17, 19]

Note

Numbers don’t need to be quoted since they represent a value (rather than a
string of characters). It’s the difference between 2 (the numeric value
2) and "2" (the character/digit representing the number 2). Don’t worry
if this doesn’t make sense right now. You’ll soon get used to it.

It’s even possible to store different sorts of things in the same list:

mixed_up_list = ["hello!", 1.234, Image.HAPPY]

Notice that last item? It was an image!

We can tell MicroPython to animate a list of images. Luckily we have a
couple of lists of images already built in. They’re called Image.ALL_CLOCKS
and Image.ALL_ARROWS:

from microbit import *

display.show(Image.ALL_CLOCKS, loop=True, delay=100)

As with a single image, we use display.show to show it on the
device’s display. However, we tell MicroPython to use Image.ALL_CLOCKS and
it understands that it needs to show each image in the list, one after the
other. We also tell MicroPython to keep looping over the list of images (so
the animation lasts forever) by saying loop=True. Furthermore, we tell it
that we want the delay between each image to be only 100 milliseconds (a tenth
of a second) with the argument delay=100.

Can you work out how to animate over the Image.ALL_ARROWS list? How do you
avoid looping forever (hint: the opposite of True is False although
the default value for loop is False)? Can you change the speed of the
animation?

Finally, here’s how to create your own animation. In my example I’m going to
make my boat sink into the bottom of the display:

from microbit import *

boat1 = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

boat2 = Image("00000:"
 "05050:"
 "05050:"
 "05050:"
 "99999")

boat3 = Image("00000:"
 "00000:"
 "05050:"
 "05050:"
 "05050")

boat4 = Image("00000:"
 "00000:"
 "00000:"
 "05050:"
 "05050")

boat5 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "05050")

boat6 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "00000")

all_boats = [boat1, boat2, boat3, boat4, boat5, boat6]
display.show(all_boats, delay=200)

Here’s how the code works:

	I create six boat images in exactly the same way I described above.

	Then, I put them all into a list that I call all_boats.

	Finally, I ask display.show to animate the list with a delay of 200 milliseconds.

	Since I’ve not set loop=True the boat will only sink once (thus making my animation scientifically accurate). :-)

What would you animate? Can you animate special effects? How would you make an
image fade out and then fade in again?

Buttons

So far we have created code that makes the device do something. This is called
output. However, we also need the device to react to things. Such things are
called inputs.

It’s easy to remember: output is what the device puts out to the world
whereas input is what goes into the device for it to process.

The most obvious means of input on the micro:bit are its two buttons, labelled
A and B. Somehow, we need MicroPython to react to button presses.

This is remarkably simple:

from microbit import *

sleep(10000)
display.scroll(str(button_a.get_presses()))

All this script does is sleep for ten thousand milliseconds (i.e. 10 seconds)
and then scrolls the number of times you pressed button A. That’s it!

While it’s a pretty useless script, it introduces a couple of interesting new
ideas:

	The sleep function will make the micro:bit sleep for a certain number
of milliseconds. If you want a pause in your program, this is how to do it.
A function is just like a method, but it isn’t attached by a dot to an
object.

	There is an object called button_a and it allows you to get the number
of times it has been pressed with the get_presses method.

Since get_presses gives a numeric value and display.scroll only
displays characters, we need to convert the numeric value into a string of
characters. We do this with the str function (short for “string” ~ it
converts things into strings of characters).

The third line is a bit like an onion. If the parenthesis are the
onion skins then you’ll notice that display.scroll contains str that
itself contains button_a.get_presses. Python attempts to work out the
inner-most answer first before starting on the next layer out. This is called
nesting - the coding equivalent of a Russian Matrioshka doll.

[image: ../_images/matrioshka.jpg]
Let’s pretend you’ve pressed the button 10 times. Here’s how Python works out
what’s happening on the third line:

Python sees the complete line and gets the value of get_presses:

display.scroll(str(button_a.get_presses()))

Now that Python knows how many button presses there have been, it converts the
numeric value into a string of characters:

display.scroll(str(10))

Finally, Python knows what to scroll across the display:

display.scroll("10")

While this might seem like a lot of work, MicroPython makes this happen
extraordinarily fast.

Event Loops

Often you need your program to hang around waiting for something to happen. To
do this you make it loop around a piece of code that defines how to react to
certain expected events such as a button press.

To make loops in Python you use the while keyword. It checks if something
is True. If it is, it runs a block of code called the body of the loop.
If it isn’t, it breaks out of the loop (ignoring the body) and the rest of the
program can continue.

Python makes it easy to define blocks of code. Say I have a to-do list written
on a piece of paper. It probably looks something like this:

Shopping
Fix broken gutter
Mow the lawn

If I wanted to break down my to-do list a bit further, I might write something
like this:

Shopping:
 Eggs
 Bacon
 Tomatoes
Fix broken gutter:
 Borrow ladder from next door
 Find hammer and nails
 Return ladder
Mow the lawn:
 Check lawn around pond for frogs
 Check mower fuel level

It’s obvious that the main tasks are broken down into sub-tasks that are
indented underneath the main task to which they are related. So Eggs,
Bacon and Tomatoes are obviously related to Shopping. By indenting
things we make it easy to see, at a glance, how the tasks relate to each other.

This is called nesting. We use nesting to define blocks of code like this:

from microbit import *

while running_time() < 10000:
 display.show(Image.ASLEEP)

display.show(Image.SURPRISED)

The running_time function returns the number of milliseconds since the
device started.

The while running_time() < 10000: line checks if the running time is less
than 10000 milliseconds (i.e. 10 seconds). If it is, and this is where we can
see scoping in action, then it’ll display Image.ASLEEP. Notice how this is
indented underneath the while statement just like in our to-do list.

Obviously, if the running time is equal to or greater than 10000 milliseconds
then the display will show Image.SURPRISED. Why? Because the while
condition will be False (running_time is no longer < 10000). In that
case the loop is finished and the program will continue after the while
loop’s block of code. It’ll look like your device is asleep for 10
seconds before waking up with a surprised look on its face.

Try it!

Handling an Event

If we want MicroPython to react to button press events we should put it into
an infinite loop and check if the button is_pressed.

An infinite loop is easy:

while True:
 # Do stuff

(Remember, while checks if something is True to work out if it should
run its block of code. Since True is obviously True for all time, you
get an infinite loop!)

Let’s make a very simple cyber-pet. It’s always sad unless you’re pressing
button A. If you press button B it dies. (I realise this isn’t a very
pleasant game, so perhaps you can figure out how to improve it.):

from microbit import *

while True:
 if button_a.is_pressed():
 display.show(Image.HAPPY)
 elif button_b.is_pressed():
 break
 else:
 display.show(Image.SAD)

display.clear()

Can you see how we check what buttons are pressed? We used if,
elif (short for “else if”) and else. These are called conditionals
and work like this:

if something is True:
 # do one thing
elif some other thing is True:
 # do another thing
else:
 # do yet another thing.

This is remarkably similar to English!

The is_pressed method only produces two results: True or False.
If you’re pressing the button it returns True, otherwise it returns
False. The code above is saying, in English, “for ever and ever, if
button A is pressed then show a happy face, else if button B is pressed break
out of the loop, otherwise display a sad face.” We break out of the loop (stop
the program running for ever and ever) with the break statement.

At the very end, when the cyber-pet is dead, we clear the display.

Can you think of ways to make this game less tragic? How would you check if
both buttons are pressed? (Hint: Python has and, or and not
logical operators to help check multiple truth statements (things that
produce either True or False results).

Input/Output

There are strips of metal along the bottom edge of the BBC micro:bit that make
it look as if the device has teeth. These are the input/output pins (or I/O pins
for short).

[image: ../_images/blue-microbit.png]
Some of the pins are bigger than others so it’s possible to attach crocodile
clips to them. These are the ones labelled 0, 1, 2, 3V and GND (computers
always start counting from zero). If you attach an edge connector board to the
device it’s possible to plug in wires connected to the other (smaller) pins.

Each pin on the BBC micro:bit is represented by an object called pinN
where N is the pin number. So, for example, to do things with the pin
labelled with a 0 (zero), use the object called pin0.

Simple!

These objects have various methods associated with them depending upon what
the specific pin is capable of.

Ticklish Python

The simplest example of input via the pins is a check to see if they are
touched. So, you can tickle your device to make it laugh like this:

from microbit import *

while True:
 if pin0.is_touched():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

With one hand, hold your device by the GND pin. Then, with your other hand,
touch (or tickle) the 0 (zero) pin. You should see the display change from
grumpy to happy!

This is a form of very basic input measurement. However, the fun really starts
when you plug in circuits and other devices via the pins.

Bleeps and Bloops

The simplest thing we can attach to the device is a Piezo speaker. We’re going
to use it for output.

[image: ../_images/piezo.jpg]
These small devices play a high-pitched bleep when connected to a circuit. To
attach one to your BBC micro:bit you should attach crocodile clips to pin 0 and
GND (as shown below).

[image: ../_images/pin0-gnd.png]
The wire from pin 0 should be attached to the positive connector on the speaker
and the wire from GND to the negative connector.

The following program will cause the speaker to make a sound:

from microbit import *

pin0.write_digital(1)

This is fun for about 5 seconds and then you’ll want to make the horrible
squeaking stop. Let’s improve our example and make the device bleep:

from microbit import *

while True:
 pin0.write_digital(1)
 sleep(20)
 pin0.write_digital(0)
 sleep(480)

Can you work out how this script works? Remember that 1 is “on” and 0
is “off” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This
causes the speaker to emit a beep. While the speaker is beeping, the device
sleeps for twenty milliseconds and then switches pin 0 off. This gives the
effect of a short bleep. Finally, the device sleeps for 480 milliseconds before
looping back and starting all over again. This means you’ll get two bleeps per
second (one every 500 milliseconds).

We’ve made a very simple metronome!

Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module.
It’s very easy to generate bleeps and bloops from the device if you attach a
speaker. Use crocodile clips to attach pin 0 and GND to the positive and
negative inputs on the speaker - it doesn’t matter which way round they are
connected to the speaker.

[image: ../_images/pin0-gnd.png]

Note

Do not attempt this with a Piezo speaker - such speakers are only able to
play a single tone.

Let’s play some music:

import music

music.play(music.NYAN)

Notice that we import the music module. It contains methods used to make
and control sound.

MicroPython has quite a lot of built-in melodies. Here’s a complete list:

	music.DADADADUM

	music.ENTERTAINER

	music.PRELUDE

	music.ODE

	music.NYAN

	music.RINGTONE

	music.FUNK

	music.BLUES

	music.BIRTHDAY

	music.WEDDING

	music.FUNERAL

	music.PUNCHLINE

	music.PYTHON

	music.BADDY

	music.CHASE

	music.BA_DING

	music.WAWAWAWAA

	music.JUMP_UP

	music.JUMP_DOWN

	music.POWER_UP

	music.POWER_DOWN

Take the example code and change the melody. Which one is your favourite? How
would you use such tunes as signals or cues?

Wolfgang Amadeus Microbit

Creating your own tunes is easy!

Each note has a name (like C# or F), an octave (telling MicroPython how
high or low the note should be played) and a duration (how
long it lasts through time). Octaves are indicated by a number ~ 0 is the
lowest octave, 4 contains middle C and 8 is about as high as you’ll ever need
unless you’re making music for dogs. Durations are also expressed as numbers.
The higher the value of the duration the longer it will last. Such
values are related to each other - for instance, a duration of 4 will last
twice as long as a duration 2 (and so on). If you use the note name R
then MicroPython will play a rest (i.e. silence) for the specified duration.

Each note is expressed as a string of characters like this:

NOTE[octave][:duration]

For example, "A1:4" refers to the note named A in octave number 1
to be played for a duration of 4.

Make a list of notes to create a melody (it’s equivalent to creating an
animation with a list of images). For example, here’s how to make MicroPython
play opening of “Frere Jaques”:

import music

tune = ["C4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4", "E4:4", "C4:4",
 "E4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]
music.play(tune)

Note

MicroPython helps you to simplify such melodies. It’ll remember the octave
and duration values until you next change them. As a result, the example
above can be re-written as:

import music

tune = ["C4:4", "D", "E", "C", "C", "D", "E", "C", "E", "F", "G:8",
 "E:4", "F", "G:8"]
music.play(tune)

Notice how the octave and duration values only change when they have to.
It’s a lot less typing and simpler to read.

Sound Effects

MicroPython lets you make tones that are not musical notes. For example, here’s
how to create a Police siren effect:

import music

while True:
 for freq in range(880, 1760, 16):
 music.pitch(freq, 6)
 for freq in range(1760, 880, -16):
 music.pitch(freq, 6)

Notice how the music.pitch method is used in this instance. It expects a
frequency. For example, the frequency of 440 is the same as a concert A
used to tune a symphony orchestra.

In the example above the range function is used to generate ranges of
numeric values. These numbers are used to define the pitch of the tone. The
three arguments for the range function are the start value, end value and
step size. Therefore, the first use of range is saying, in English, “create
a range of numbers between 880 and 1760 in steps of 16”. The second use of
range is saying, “create a range of values between 1760 and 880 in steps of
-16”. This is how we get a range of frequencies that go up and down in pitch
like a siren.

Because the siren should last forever it’s wrapped in an infinite while
loop.

Importantly, we have introduced a new sort of a loop inside the while
loop: the for loop. In English it’s like saying, “for each item in some
collection, do some activity with it”. Specifically in the example above, it’s
saying, “for each frequency in the specified range of frequencies, play the
pitch of that frequency for 6 milliseconds”. Notice how the thing to do for
each item in a for loop is indented (as discussed earlier) so Python knows
exactly which code to run to handle the individual items.

Random

Sometimes you want to leave things to chance, or mix it up a little: you want
the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance
and a little chaos into your code. For example, here’s how to scroll a random
name across the display:

from microbit import *
import random

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan"]

display.scroll(random.choice(names))

The list (names) contains seven names defined as strings of characters.
The final line is nested (the “onion” effect introduced earlier): the
random.choice method takes the names list as an argument and returns
an item chosen at random. This item (the randomly chosen name) is the argument
for display.scroll.

Can you modify the list to include your own set of names?

Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have
dice?

MicroPython comes with several useful random number methods. Here’s how to
make a simple dice:

from microbit import *
import random

display.show(str(random.randint(1, 6)))

Every time the device is reset it displays a number between 1 and 6. You’re
starting to get familiar with nesting, so it’s important to note that
random.randint returns a whole number between the two arguments, inclusive
(a whole number is also called an integer - hence the name of the method).
Notice that because display.show expects a character then we use the
str function to turn the numeric value into a character (we turn, for
example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the
random.randrange method. If you give it a single argument it’ll return
random integers up to, but not including, the value of the argument N
(this is different to the behaviour of random.randint).

Sometimes you need numbers with a decimal point in them. These are called
floating point numbers and it’s possible to generate such a number with the
random.random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results
of random.randrange and random.random like this:

from microbit import *
import random

answer = random.randrange(100) + random.random()
display.scroll(str(answer))

Seeds of Chaos

The random number generators used by computers are not truly random. They just
give random like results given a starting seed value. The seed is often
generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of
randomness that is reproducible. It’s like saying that you need the same five
random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the
random number generator will create the same set of random numbers. The seed is
set with random.seed and any whole number (integer). This version of the
dice program always produces the same results:

from microbit import *
import random

random.seed(1337)
while True:
 if button_a.was_pressed():
 display.show(str(random.randint(1, 6)))

Can you work out why this program needs us to press button A instead of reset
the device as in the first dice example..?

Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along
three axes:

	X - tilting from left to right.

	Y - tilting forwards and backwards.

	Z - moving up and down.

There is a method for each axis that returns a positive or negative number
indicating a measurement in milli-g’s. When the reading is 0 you are “level”
along that particular axis.

For example, here’s a very simple spirit-level that uses get_x to measure
how level the device is along the X axis:

from microbit import *

while True:
 reading = accelerometer.get_x()
 if reading > 20:
 display.show("R")
 elif reading < -20:
 display.show("L")
 else:
 display.show("-")

If you hold the device flat it should display -; however, rotate it left or
right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an
infinite while loop. The first thing to happen within the body of the
loop is a measurement along the X axis which is called reading. Because
the accelerometer is so sensitive I’ve made level +/-20 in range. It’s why
the if and elif conditionals check for > 20 and < -20. The
else statement means that if the reading is between -20 and 20 then
we consider it level. For each of these conditions we use the display to show
the appropriate character.

There is also a get_y method for the Y axis and a get_z method for the
Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on
its screen, it’s because it uses an accelerometer in exactly the same way as
the program above. Game controllers also contain accelerometers to help you
steer and move around in games.

Musical Mayhem

One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it
lets you easily link different capabilities of the device together. For
example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to
attach pin 0 and GND to the positive and negative inputs on the speaker - it
doesn’t matter which way round they are connected to the speaker.

[image: ../_images/pin0-gnd.png]
What happens if we take the readings from the accelerometer and play them as
pitches? Let’s find out:

from microbit import *
import music

while True:
 music.pitch(accelerometer.get_y(), 10)

The key line is at the end and remarkably simple. We nest the reading from
the Y axis as the frequency to feed into the music.pitch method. We only
let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it
is constantly reacting to changes in the Y axis measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is
positive it’ll change the pitch of the tone played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How
would you improve the program to make the micro:bit sound more musical?

Gestures

The really interesting side-effect of having an accelerometer is gesture
detection. If you move your BBC micro:bit in a certain way (as a gesture) then
MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down,
left, right, face up, face down, freefall, 3g, 6g,
8g, shake. Gestures are always represented as strings. While most of
the names should be obvious, the 3g, 6g and 8g gestures apply when
the device encounters these levels of g-force (like when an astronaut is
launched into space).

To get the current gesture use the accelerometer.current_gesture method.
Its result is going to be one of the named gestures listed above. For example,
this program will only make your device happy if it is face up:

from microbit import *

while True:
 gesture = accelerometer.current_gesture()
 if gesture == "face up":
 display.show(Image.HAPPY)
 else:
 display.show(Image.ANGRY)

Once again, because we want the device to react to changing circumstances we
use a while loop. Within the scope of the loop the current gesture is
read and put into gesture. The if conditional checks if gesture is
equal to "face up" (Python uses == to test for equality, a single
equals sign = is used for assignment - just like how we assign the gesture
reading to the gesture object). If the gesture is equal to "face up"
then use the display to show a happy face. Otherwise, the device is made to
look angry!

Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask
it a yes/no question, shake it and wait for it to reveal the truth. It’s rather
easy to turn into a program:

from microbit import *
import random

answers = [
 "It is certain",
 "It is decidedly so",
 "Without a doubt",
 "Yes, definitely",
 "You may rely on it",
 "As I see it, yes",
 "Most likely",
 "Outlook good",
 "Yes",
 "Signs point to yes",
 "Reply hazy try again",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it"
 "My reply is no",
 "My sources say no",
 "Outlook not so good",
 "Very doubtful",
]

while True:
 display.show("8")
 if accelerometer.was_gesture("shake"):
 display.clear()
 sleep(1000)
 display.scroll(random.choice(answers))

Most of the program is a list called answers. The actual game is in the
while loop at the end.

The default state of the game is to show the character "8". However, the
program needs to detect if it has been shaken. The was_gesture method uses
its argument (in this case, the string "shake" because we want to detect
a shake) to return a True / False response. If the device was shaken
the if conditional drops into its block of code where it clears the screen,
waits for a second (so the device appears to be thinking about your question)
and displays a randomly chosen answer.

Why not ask it if this is the greatest program ever written? What could you do
to “cheat” and make the answer always positive or negative? (Hint: use the
buttons.)

Direction

There is a compass on the BBC micro:bit. If you ever make a weather station
use the device to work out the wind direction.

Compass

It can also tell you the direction of North like this:

from microbit import *

compass.calibrate()

while True:
 needle = ((15 - compass.heading()) // 30) % 12
 display.show(Image.ALL_CLOCKS[needle])

You must calibrate the compass before taking readings. Failure to do so
will just produce garbage results. The calibration method runs a fun little
game to help the device work out where it is in relation to the Earth’s
magnetic field.

The program takes the compass.heading and, using some simple yet
cunning maths (floor division // and modulo % ~ look up what these
mean), works out the number of the clock hand to use to display on the screen
so that it is pointing roughly North.

Network

It is possible to connect devices together to send and receive
messages to and from each other. This is called a network. A network of
interconnected networks is called an internet. The Internet is an internet
of all the internets.

Networking is hard and this is reflected in the program described below.
However, the beautiful thing about this project is it contains all the common
aspects of network programming you need to know about. It’s also remarkably
simple and fun.

But first, let’s set the scene...

Connection

Imagine a network as a series of layers. At the very bottom is the most
fundamental aspect of communication: there needs to be some sort of way for
a signal to get from one device to the other. Sometimes this is done via a
radio connection, but in this example we’re simply going to use two wires.

[image: ../_images/network.png]
It is upon this foundation that we can build all the other layers in the
network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile
leads. Both use pin 1 for output and pin 2 for input. The output from one
device is connected to the input on the other. It’s a bit like knowing which
way round to hold a telephone handset - one end has a microphone (the input)
and the other a speaker (the output). The recording of your voice via your
microphone is played out of the other person’s speaker. If you hold the
phone the wrong way up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!

Signal

The next layer in the network stack is the signal. Often this will depend
upon the characteristics of the connection. In our example it’s simply
digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the IO pins like this:

pin1.write_digital(1) # switch the signal on
pin1.write_digital(0) # switch the signal off
input = pin2.read_digital() # read the value of the signal (either 1 or 0)

The next step involves describing how to use and handle a signal. For that we
need a...

Protocol

If you ever meet the Queen there are expectations about how you ought to
behave. For example, when she arrives you may bow or curtsey, if she offers her
hand politely shake it, refer to her as “your majesty” and thereafter as
“ma’am” and so on. This set of rules is called the royal protocol. A protocol
explains how to behave given a specific situation (such as meeting the
Queen). A protocol is pre-defined to ensure everyone understands what’s going
on before a given situation arises.

[image: ../_images/queen.jpg]
It is for this reason that we define and use protocols for communicating
messages via a computer network. Computers need to agree before hand how to
send and receive messages. Perhaps the best known protocol is the
hypertext transfer protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is
Morse code. It defines how to send character-based messages via on/off signals
of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (-) whereas short durations are dots (.).
By combining dashes and dots Morse defines a way to send characters. For
example, here’s how the standard Morse alphabet is defined:

.- A --- J ... S .---- 1 ----. 9
-... B -.- K - T ..--- 2 ----- 0
-.-. C .-.. L ..- U ...-- 3
-.. D -- M ...- V - 4
. E -. N .-- W 5
..-. F --- O -..- X -.... 6
--. G .--. P -.-- Y --... 7
.... H --.- Q --.. Z ---.. 8
.. I .-. R

Given the chart above, to send the character “H” the signal is switched on four
times for a short duration, indicating four dots (....). For the letter
“L” the signal is also switched on four times, but the second signal has a
longer duration (.-..).

Obviously, the timing of the signal is important: we need to tell a dot from a
dash. That’s another point of a protocol, to agree such things so everyone’s
implementation of the protocol will work with everyone elses. In this instance
we’ll just say that:

	A signal with a duration less than 250 milliseconds is a dot.

	A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.

	Any other duration of signal is ignored.

	A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.

In this way, the sending of a letter “H” is defined as four “on” signals that
last no longer than 250 milliseconds each, followed by a pause of greater than
500 milliseconds (indicating the end of the character).

Message

We’re finally at a stage where we can build a message - a message that actually
means something to us humans. This is the top-most layer of our network
stack.

Using the protocol defined above I can send the following sequence of signals
down the physical wire to the other micro:bit:

...././.-../.-../---/.--/---/.-./.-../-..

Can you work out what it says?

Application

It’s all very well having a network stack, but you also need a way to
interact with it - some form of application to send and receive messages.
While HTTP is interesting most people don’t know about it and let their
web-browser handle it - the underlying network stack of the world wide web
is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should
it work, from the user’s point of view?

Obviously, to send a message you should be able to input dots and dashes (we
can use button A for that). If we want to see the message we sent or just
received we should be able to trigger it to scroll across the display (we can
use button B for that). Finally, this being Morse code, if a speaker is
attached, we should be able to play the beeps as a form of aural feedback while
the user is entering their message.

The End Result

Here’s the program, in all its glory and annotated with plenty of comments so
you can see what’s going on:

from microbit import *
import music

A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
 ".-": "A",
 "-...": "B",
 "-.-.": "C",
 "-..": "D",
 ".": "E",
 "..-.": "F",
 "--.": "G",
 "....": "H",
 "..": "I",
 ".---": "J",
 "-.-": "K",
 ".-..": "L",
 "--": "M",
 "-.": "N",
 "---": "O",
 ".--.": "P",
 "--.-": "Q",
 ".-.": "R",
 "...": "S",
 "-": "T",
 "..-": "U",
 "...-": "V",
 ".--": "W",
 "-..-": "X",
 "-.--": "Y",
 "--..": "Z",
 ".----": "1",
 "..---": "2",
 "...--": "3",
 "....-": "4",
 ".....": "5",
 "-....": "6",
 "--...": "7",
 "---..": "8",
 "----.": "9",
 "-----": "0"
}

def decode(buffer):
 # Attempts to get the buffer of Morse code data from the lookup table. If
 # it's not there, just return a full stop.
 return MORSE_CODE_LOOKUP.get(buffer, '.')

How to display a single dot.
DOT = Image("00000:"
 "00000:"
 "00900:"
 "00000:"
 "00000:")

How to display a single dash.
DASH = Image("00000:"
 "00000:"
 "09990:"
 "00000:"
 "00000:")

To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500

Holds the incoming Morse signals.
buffer = ''
Holds the translated Morse as characters.
message = ''
The time from which the device has been waiting for the next keypress.
started_to_wait = running_time()

Put the device in a loop to wait for and react to key presses.
while True:
 # Work out how long the device has been waiting for a keypress.
 waiting = running_time() - started_to_wait
 # Reset the timestamp for the key_down_time.
 key_down_time = None
 # If button_a is held down, then...
 while button_a.is_pressed():
 # Play a beep - this is Morse code y'know ;-)
 music.pitch(880, 10)
 # Set pin1 (output) to "on"
 pin1.write_digital(1)
 # ...and if there's not a key_down_time then set it to now!
 if not key_down_time:
 key_down_time = running_time()
 # Alternatively, if pin2 (input) is getting a signal, pretend it's a
 # button_a key press...
 while pin2.read_digital():
 if not key_down_time:
 key_down_time = running_time()
 # Get the current time and call it key_up_time.
 key_up_time = running_time()
 # Set pin1 (output) to "off"
 pin1.write_digital(0)
 # If there's a key_down_time (created when button_a was first pressed
 # down).
 if key_down_time:
 # ... then work out for how long it was pressed.
 duration = key_up_time - key_down_time
 # If the duration is less than the max length for a "dot" press...
 if duration < DOT_THRESHOLD:
 # ... then add a dot to the buffer containing incoming Morse codes
 # and display a dot on the display.
 buffer += '.'
 display.show(DOT)
 # Else, if the duration is less than the max length for a "dash"
 # press... (but longer than that for a DOT ~ handled above)
 elif duration < DASH_THRESHOLD:
 # ... then add a dash to the buffer and display a dash.
 buffer += '-'
 display.show(DASH)
 # Otherwise, any other sort of keypress duration is ignored (this isn't
 # needed, but added for "understandability").
 else:
 pass
 # The button press has been handled, so reset the time from which the
 # device is starting to wait for a button press.
 started_to_wait = running_time()
 # Otherwise, there hasn't been a button_a press during this cycle of the
 # loop, so check there's not been a pause to indicate an end of the
 # incoming Morse code character. The pause must be longer than a DASH
 # code's duration.
 elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
 # There is a buffer and it's reached the end of a code so...
 # Decode the incoming buffer.
 character = decode(buffer)
 # Reset the buffer to empty.
 buffer = ''
 # Show the decoded character.
 display.show(character)
 # Add the character to the message.
 message += character
 # Finally, if button_b was pressed while all the above was going on...
 if button_b.was_pressed():
 # ... display the message,
 display.scroll(message)
 # then reset it to empty (ready for a new message).
 message = ''

How would you improve it? Can you change the definition of a dot and a dash so
speedy Morse code users can use it? What happens if both devices are sending at
the same time? What might you do to handle this situation?

Next Steps

These tutorials are only the first steps in using MicroPython with the
BBC micro:bit. A musical analogy: you’ve got a basic understanding of
a very simple instrument and confidently play “Three Blind Mice”.

This is an achievement to build upon.

Ahead of you is an exciting journey to becoming a virtuoso coder.

You will encounter frustration, failure and foolishness. When you do please
remember that you’re not alone. Python has a secret weapon: the most amazing
community of programmers on the planet. Connect with this community and you
will make friends, find mentors, support each other and share resources.

The examples in the tutorials are simple to explain but may not be the simplest
or most efficient implementations. We’ve left out lots of really fun stuff so
we could concentrate on arming you with the basics. If you really want to
know how to make MicroPython fly on the BBC micro:bit then read the API
reference documentation. It contains information about all the capabilities
available to you.

Explore, experiment and be fearless trying things out ~ for these are the
attributes of a virtuoso coder. To encourage you we have hidden a number of
Easter eggs in MicroPython and the code editors (both TouchDevelop and Mu).
They’re fun rewards for looking “under the hood” and “poking with a stick”.

Such skill in Python is valuable: it’s one of the world’s most popular
professional programming languages.

Amaze us with your code! Make things that delight us! Most of all, have fun!

Happy hacking!

Hello, World!

The traditional way to start programming in a new language is to get your
computer to say, “Hello, World!”.

[image: ../_images/scroll-hello1.gif]
This is easy with MicroPython:

from microbit import *
display.scroll("Hello, World!")

Each line does something special. The first line:

from microbit import *

...tells MicroPython to get all the stuff it needs to work with the BBC
micro:bit. All this stuff is in a module called microbit (a module
is a library of pre-existing code). When you import something you’re telling
MicroPython that you want to use it, and * is Python’s way to say
everything. So, from microbit import * means, in English, “I want to be
able to use everything from the microbit code library”.

The second line:

display.scroll("Hello, World!")

...tells MicroPython to use the display to scroll the string of characters
“Hello, World!”. The display part of that line is an object from the
microbit module that represents the device’s physical display (we say
“object” instead of “thingy”, “whatsit” or “doodah”). We can tell the display
to do things with a full-stop . followed by what looks like a command (in
fact it’s something we call a method). In this case we’re using the
scroll method. Since scroll needs to know what characters to scroll
across the physical display we specify them between double quotes (")
within parenthesis ((and)). These are called the arguments. So,
display.scroll("Hello, World!") means, in English, “I want you to use the
display to scroll the text ‘Hello, World!’”. If a method doesn’t need any
arguments we make this clear by using empty parenthesis like this: ().

Copy the “Hello, World!” code into your editor and flash it onto the device.
Can you work out how to change the message? Can you make it say hello to you?
For example, I might make it say “Hello, Nicholas!”. Here’s a clue, you need to
change the scroll method’s argument.

Warning

It may not work. :-)

This is where things get fun and MicroPython tries to be helpful. If
it encounters an error it will scroll a helpful message on the micro:bit’s
display. If it can, it will tell you the line number for where the error
can be found.

Python expects you to type EXACTLY the right thing. So, for instance,
Microbit, microbit and microBit are all different things to
Python. If MicroPython complains about a NameError it’s probably
because you’ve typed something inaccurately. It’s like the difference
between referring to “Nicholas” and “Nicolas”. They’re two different people
but their names look very similar.

If MicroPython complains about a SyntaxError you’ve simply typed code
in a way that MicroPython can’t understand. Check you’re not missing any
special characters like " or :. It’s like putting. a full stop in
the middle of a sentence. It’s hard to understand exactly what you mean.

Images

MicroPython is about as good at art as you can be if the only thing you have is
a 5x5 grid of red LEDs (light emitting diodes - the things that light up on the
front of the device). MicroPython gives you quite a lot of control over the
display so you can create all sorts of interesting effects.

MicroPython comes with lots of built-in pictures to show on the display.
For example, to make the device appear happy you type:

from microbit import *
display.show(Image.HAPPY)

I suspect you can remember what the first line does. The second line uses the
display object to show a built-in image. The happy image we want to
display is a part of the Image object and called HAPPY. We tell
show to use it by putting it between the parenthesis ((and)).

[image: ../_images/happy.png]
Here’s a list of the built-in images:

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

There’s quite a lot! Why not modify the code that makes the micro:bit look
happy to see what some of the other built-in images look like? (Just replace
Image.HAPPY with one of the built-in images listed above.)

DIY Images

Of course, you want to make your own image to display on the micro:bit, right?

That’s easy.

Each LED pixel on the physical display can be set to one of ten values. If a
pixel is set to 0 (zero) then it’s off. It literally has zero brightness.
However, if it is set to 9 then it is at its brightest level. The values
1 to 8 represent the brightness levels between off (0) and full on
(9).

Armed with this information, it’s possible to create a new image like this:

from microbit import *

boat = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

display.show(boat)

(When run, the device should display an old-fashioned “Blue Peter” sailing ship
with the masts dimmer than the boat’s hull.)

Have you figured out how to draw a picture? Have you noticed that each line of
the physical display is represented by a line of numbers ending in : and
enclosed between " double quotes? Each number specifies a brightness.
There are five lines of five numbers so it’s possible to specify the individual
brightness for each of the five pixels on each of the five lines on the
physical display. That’s how to create a new image.

Simple!

In fact, you don’t need to write this over several lines. If you think you can
keep track of each line, you can rewrite it like this:

boat = Image("05050:05050:05050:99999:09990")

Animation

Static images are fun, but it’s even more fun to make them move. This is also
amazingly simple to do with MicroPython ~ just use a list of images!

Here is a shopping list:

Eggs
Bacon
Tomatoes

Here’s how you’d represent this list in Python:

shopping = ["Eggs", "Bacon", "Tomatoes"]

I’ve simply created a list called shopping and it contains three items.
Python knows it’s a list because it’s enclosed in square brackets ([and
]). Items in the list are separated by a comma (,) and in this instance
the items are three strings of characters: "Eggs", "Bacon" and
"Tomatoes". We know they are strings of characters because they’re enclosed
in quotation marks ".

You can store anything in a list with Python. Here’s a list of numbers:

primes = [2, 3, 5, 7, 11, 13, 17, 19]

Note

Numbers don’t need to be quoted since they represent a value (rather than a
string of characters). It’s the difference between 2 (the numeric value
2) and "2" (the character/digit representing the number 2). Don’t worry
if this doesn’t make sense right now. You’ll soon get used to it.

It’s even possible to store different sorts of things in the same list:

mixed_up_list = ["hello!", 1.234, Image.HAPPY]

Notice that last item? It was an image!

We can tell MicroPython to animate a list of images. Luckily we have a
couple of lists of images already built in. They’re called Image.ALL_CLOCKS
and Image.ALL_ARROWS:

from microbit import *

display.show(Image.ALL_CLOCKS, loop=True, delay=100)

As with a single image, we use display.show to show it on the
device’s display. However, we tell MicroPython to use Image.ALL_CLOCKS and
it understands that it needs to show each image in the list, one after the
other. We also tell MicroPython to keep looping over the list of images (so
the animation lasts forever) by saying loop=True. Furthermore, we tell it
that we want the delay between each image to be only 100 milliseconds (a tenth
of a second) with the argument delay=100.

Can you work out how to animate over the Image.ALL_ARROWS list? How do you
avoid looping forever (hint: the opposite of True is False although
the default value for loop is False)? Can you change the speed of the
animation?

Finally, here’s how to create your own animation. In my example I’m going to
make my boat sink into the bottom of the display:

from microbit import *

boat1 = Image("05050:"
 "05050:"
 "05050:"
 "99999:"
 "09990")

boat2 = Image("00000:"
 "05050:"
 "05050:"
 "05050:"
 "99999")

boat3 = Image("00000:"
 "00000:"
 "05050:"
 "05050:"
 "05050")

boat4 = Image("00000:"
 "00000:"
 "00000:"
 "05050:"
 "05050")

boat5 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "05050")

boat6 = Image("00000:"
 "00000:"
 "00000:"
 "00000:"
 "00000")

all_boats = [boat1, boat2, boat3, boat4, boat5, boat6]
display.show(all_boats, delay=200)

Here’s how the code works:

	I create six boat images in exactly the same way I described above.

	Then, I put them all into a list that I call all_boats.

	Finally, I ask display.show to animate the list with a delay of 200 milliseconds.

	Since I’ve not set loop=True the boat will only sink once (thus making my animation scientifically accurate). :-)

What would you animate? Can you animate special effects? How would you make an
image fade out and then fade in again?

Buttons

So far we have created code that makes the device do something. This is called
output. However, we also need the device to react to things. Such things are
called inputs.

It’s easy to remember: output is what the device puts out to the world
whereas input is what goes into the device for it to process.

The most obvious means of input on the micro:bit are its two buttons, labelled
A and B. Somehow, we need MicroPython to react to button presses.

This is remarkably simple:

from microbit import *

sleep(10000)
display.scroll(str(button_a.get_presses()))

All this script does is sleep for ten thousand milliseconds (i.e. 10 seconds)
and then scrolls the number of times you pressed button A. That’s it!

While it’s a pretty useless script, it introduces a couple of interesting new
ideas:

	The sleep function will make the micro:bit sleep for a certain number
of milliseconds. If you want a pause in your program, this is how to do it.
A function is just like a method, but it isn’t attached by a dot to an
object.

	There is an object called button_a and it allows you to get the number
of times it has been pressed with the get_presses method.

Since get_presses gives a numeric value and display.scroll only
displays characters, we need to convert the numeric value into a string of
characters. We do this with the str function (short for “string” ~ it
converts things into strings of characters).

The third line is a bit like an onion. If the parenthesis are the
onion skins then you’ll notice that display.scroll contains str that
itself contains button_a.get_presses. Python attempts to work out the
inner-most answer first before starting on the next layer out. This is called
nesting - the coding equivalent of a Russian Matrioshka doll.

[image: ../_images/matrioshka.jpg]
Let’s pretend you’ve pressed the button 10 times. Here’s how Python works out
what’s happening on the third line:

Python sees the complete line and gets the value of get_presses:

display.scroll(str(button_a.get_presses()))

Now that Python knows how many button presses there have been, it converts the
numeric value into a string of characters:

display.scroll(str(10))

Finally, Python knows what to scroll across the display:

display.scroll("10")

While this might seem like a lot of work, MicroPython makes this happen
extraordinarily fast.

Event Loops

Often you need your program to hang around waiting for something to happen. To
do this you make it loop around a piece of code that defines how to react to
certain expected events such as a button press.

To make loops in Python you use the while keyword. It checks if something
is True. If it is, it runs a block of code called the body of the loop.
If it isn’t, it breaks out of the loop (ignoring the body) and the rest of the
program can continue.

Python makes it easy to define blocks of code. Say I have a to-do list written
on a piece of paper. It probably looks something like this:

Shopping
Fix broken gutter
Mow the lawn

If I wanted to break down my to-do list a bit further, I might write something
like this:

Shopping:
 Eggs
 Bacon
 Tomatoes
Fix broken gutter:
 Borrow ladder from next door
 Find hammer and nails
 Return ladder
Mow the lawn:
 Check lawn around pond for frogs
 Check mower fuel level

It’s obvious that the main tasks are broken down into sub-tasks that are
indented underneath the main task to which they are related. So Eggs,
Bacon and Tomatoes are obviously related to Shopping. By indenting
things we make it easy to see, at a glance, how the tasks relate to each other.

This is called nesting. We use nesting to define blocks of code like this:

from microbit import *

while running_time() < 10000:
 display.show(Image.ASLEEP)

display.show(Image.SURPRISED)

The running_time function returns the number of milliseconds since the
device started.

The while running_time() < 10000: line checks if the running time is less
than 10000 milliseconds (i.e. 10 seconds). If it is, and this is where we can
see scoping in action, then it’ll display Image.ASLEEP. Notice how this is
indented underneath the while statement just like in our to-do list.

Obviously, if the running time is equal to or greater than 10000 milliseconds
then the display will show Image.SURPRISED. Why? Because the while
condition will be False (running_time is no longer < 10000). In that
case the loop is finished and the program will continue after the while
loop’s block of code. It’ll look like your device is asleep for 10
seconds before waking up with a surprised look on its face.

Try it!

Handling an Event

If we want MicroPython to react to button press events we should put it into
an infinite loop and check if the button is_pressed.

An infinite loop is easy:

while True:
 # Do stuff

(Remember, while checks if something is True to work out if it should
run its block of code. Since True is obviously True for all time, you
get an infinite loop!)

Let’s make a very simple cyber-pet. It’s always sad unless you’re pressing
button A. If you press button B it dies. (I realise this isn’t a very
pleasant game, so perhaps you can figure out how to improve it.):

from microbit import *

while True:
 if button_a.is_pressed():
 display.show(Image.HAPPY)
 elif button_b.is_pressed():
 break
 else:
 display.show(Image.SAD)

display.clear()

Can you see how we check what buttons are pressed? We used if,
elif (short for “else if”) and else. These are called conditionals
and work like this:

if something is True:
 # do one thing
elif some other thing is True:
 # do another thing
else:
 # do yet another thing.

This is remarkably similar to English!

The is_pressed method only produces two results: True or False.
If you’re pressing the button it returns True, otherwise it returns
False. The code above is saying, in English, “for ever and ever, if
button A is pressed then show a happy face, else if button B is pressed break
out of the loop, otherwise display a sad face.” We break out of the loop (stop
the program running for ever and ever) with the break statement.

At the very end, when the cyber-pet is dead, we clear the display.

Can you think of ways to make this game less tragic? How would you check if
both buttons are pressed? (Hint: Python has and, or and not
logical operators to help check multiple truth statements (things that
produce either True or False results).

Input/Output

There are strips of metal along the bottom edge of the BBC micro:bit that make
it look as if the device has teeth. These are the input/output pins (or I/O pins
for short).

[image: ../_images/blue-microbit.png]
Some of the pins are bigger than others so it’s possible to attach crocodile
clips to them. These are the ones labelled 0, 1, 2, 3V and GND (computers
always start counting from zero). If you attach an edge connector board to the
device it’s possible to plug in wires connected to the other (smaller) pins.

Each pin on the BBC micro:bit is represented by an object called pinN
where N is the pin number. So, for example, to do things with the pin
labelled with a 0 (zero), use the object called pin0.

Simple!

These objects have various methods associated with them depending upon what
the specific pin is capable of.

Ticklish Python

The simplest example of input via the pins is a check to see if they are
touched. So, you can tickle your device to make it laugh like this:

from microbit import *

while True:
 if pin0.is_touched():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

With one hand, hold your device by the GND pin. Then, with your other hand,
touch (or tickle) the 0 (zero) pin. You should see the display change from
grumpy to happy!

This is a form of very basic input measurement. However, the fun really starts
when you plug in circuits and other devices via the pins.

Bleeps and Bloops

The simplest thing we can attach to the device is a Piezo speaker. We’re going
to use it for output.

[image: ../_images/piezo.jpg]
These small devices play a high-pitched bleep when connected to a circuit. To
attach one to your BBC micro:bit you should attach crocodile clips to pin 0 and
GND (as shown below).

[image: ../_images/pin0-gnd.png]
The wire from pin 0 should be attached to the positive connector on the speaker
and the wire from GND to the negative connector.

The following program will cause the speaker to make a sound:

from microbit import *

pin0.write_digital(1)

This is fun for about 5 seconds and then you’ll want to make the horrible
squeaking stop. Let’s improve our example and make the device bleep:

from microbit import *

while True:
 pin0.write_digital(1)
 sleep(20)
 pin0.write_digital(0)
 sleep(480)

Can you work out how this script works? Remember that 1 is “on” and 0
is “off” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This
causes the speaker to emit a beep. While the speaker is beeping, the device
sleeps for twenty milliseconds and then switches pin 0 off. This gives the
effect of a short bleep. Finally, the device sleeps for 480 milliseconds before
looping back and starting all over again. This means you’ll get two bleeps per
second (one every 500 milliseconds).

We’ve made a very simple metronome!

Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module.
It’s very easy to generate bleeps and bloops from the device if you attach a
speaker. Use crocodile clips to attach pin 0 and GND to the positive and
negative inputs on the speaker - it doesn’t matter which way round they are
connected to the speaker.

[image: ../_images/pin0-gnd.png]

Note

Do not attempt this with a Piezo speaker - such speakers are only able to
play a single tone.

Let’s play some music:

import music

music.play(music.NYAN)

Notice that we import the music module. It contains methods used to make
and control sound.

MicroPython has quite a lot of built-in melodies. Here’s a complete list:

	music.DADADADUM

	music.ENTERTAINER

	music.PRELUDE

	music.ODE

	music.NYAN

	music.RINGTONE

	music.FUNK

	music.BLUES

	music.BIRTHDAY

	music.WEDDING

	music.FUNERAL

	music.PUNCHLINE

	music.PYTHON

	music.BADDY

	music.CHASE

	music.BA_DING

	music.WAWAWAWAA

	music.JUMP_UP

	music.JUMP_DOWN

	music.POWER_UP

	music.POWER_DOWN

Take the example code and change the melody. Which one is your favourite? How
would you use such tunes as signals or cues?

Wolfgang Amadeus Microbit

Creating your own tunes is easy!

Each note has a name (like C# or F), an octave (telling MicroPython how
high or low the note should be played) and a duration (how
long it lasts through time). Octaves are indicated by a number ~ 0 is the
lowest octave, 4 contains middle C and 8 is about as high as you’ll ever need
unless you’re making music for dogs. Durations are also expressed as numbers.
The higher the value of the duration the longer it will last. Such
values are related to each other - for instance, a duration of 4 will last
twice as long as a duration 2 (and so on). If you use the note name R
then MicroPython will play a rest (i.e. silence) for the specified duration.

Each note is expressed as a string of characters like this:

NOTE[octave][:duration]

For example, "A1:4" refers to the note named A in octave number 1
to be played for a duration of 4.

Make a list of notes to create a melody (it’s equivalent to creating an
animation with a list of images). For example, here’s how to make MicroPython
play opening of “Frere Jaques”:

import music

tune = ["C4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4", "E4:4", "C4:4",
 "E4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]
music.play(tune)

Note

MicroPython helps you to simplify such melodies. It’ll remember the octave
and duration values until you next change them. As a result, the example
above can be re-written as:

import music

tune = ["C4:4", "D", "E", "C", "C", "D", "E", "C", "E", "F", "G:8",
 "E:4", "F", "G:8"]
music.play(tune)

Notice how the octave and duration values only change when they have to.
It’s a lot less typing and simpler to read.

Sound Effects

MicroPython lets you make tones that are not musical notes. For example, here’s
how to create a Police siren effect:

import music

while True:
 for freq in range(880, 1760, 16):
 music.pitch(freq, 6)
 for freq in range(1760, 880, -16):
 music.pitch(freq, 6)

Notice how the music.pitch method is used in this instance. It expects a
frequency. For example, the frequency of 440 is the same as a concert A
used to tune a symphony orchestra.

In the example above the range function is used to generate ranges of
numeric values. These numbers are used to define the pitch of the tone. The
three arguments for the range function are the start value, end value and
step size. Therefore, the first use of range is saying, in English, “create
a range of numbers between 880 and 1760 in steps of 16”. The second use of
range is saying, “create a range of values between 1760 and 880 in steps of
-16”. This is how we get a range of frequencies that go up and down in pitch
like a siren.

Because the siren should last forever it’s wrapped in an infinite while
loop.

Importantly, we have introduced a new sort of a loop inside the while
loop: the for loop. In English it’s like saying, “for each item in some
collection, do some activity with it”. Specifically in the example above, it’s
saying, “for each frequency in the specified range of frequencies, play the
pitch of that frequency for 6 milliseconds”. Notice how the thing to do for
each item in a for loop is indented (as discussed earlier) so Python knows
exactly which code to run to handle the individual items.

Random

Sometimes you want to leave things to chance, or mix it up a little: you want
the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance
and a little chaos into your code. For example, here’s how to scroll a random
name across the display:

from microbit import *
import random

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan"]

display.scroll(random.choice(names))

The list (names) contains seven names defined as strings of characters.
The final line is nested (the “onion” effect introduced earlier): the
random.choice method takes the names list as an argument and returns
an item chosen at random. This item (the randomly chosen name) is the argument
for display.scroll.

Can you modify the list to include your own set of names?

Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have
dice?

MicroPython comes with several useful random number methods. Here’s how to
make a simple dice:

from microbit import *
import random

display.show(str(random.randint(1, 6)))

Every time the device is reset it displays a number between 1 and 6. You’re
starting to get familiar with nesting, so it’s important to note that
random.randint returns a whole number between the two arguments, inclusive
(a whole number is also called an integer - hence the name of the method).
Notice that because display.show expects a character then we use the
str function to turn the numeric value into a character (we turn, for
example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the
random.randrange method. If you give it a single argument it’ll return
random integers up to, but not including, the value of the argument N
(this is different to the behaviour of random.randint).

Sometimes you need numbers with a decimal point in them. These are called
floating point numbers and it’s possible to generate such a number with the
random.random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results
of random.randrange and random.random like this:

from microbit import *
import random

answer = random.randrange(100) + random.random()
display.scroll(str(answer))

Seeds of Chaos

The random number generators used by computers are not truly random. They just
give random like results given a starting seed value. The seed is often
generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of
randomness that is reproducible. It’s like saying that you need the same five
random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the
random number generator will create the same set of random numbers. The seed is
set with random.seed and any whole number (integer). This version of the
dice program always produces the same results:

from microbit import *
import random

random.seed(1337)
while True:
 if button_a.was_pressed():
 display.show(str(random.randint(1, 6)))

Can you work out why this program needs us to press button A instead of reset
the device as in the first dice example..?

Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along
three axes:

	X - tilting from left to right.

	Y - tilting forwards and backwards.

	Z - moving up and down.

There is a method for each axis that returns a positive or negative number
indicating a measurement in milli-g’s. When the reading is 0 you are “level”
along that particular axis.

For example, here’s a very simple spirit-level that uses get_x to measure
how level the device is along the X axis:

from microbit import *

while True:
 reading = accelerometer.get_x()
 if reading > 20:
 display.show("R")
 elif reading < -20:
 display.show("L")
 else:
 display.show("-")

If you hold the device flat it should display -; however, rotate it left or
right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an
infinite while loop. The first thing to happen within the body of the
loop is a measurement along the X axis which is called reading. Because
the accelerometer is so sensitive I’ve made level +/-20 in range. It’s why
the if and elif conditionals check for > 20 and < -20. The
else statement means that if the reading is between -20 and 20 then
we consider it level. For each of these conditions we use the display to show
the appropriate character.

There is also a get_y method for the Y axis and a get_z method for the
Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on
its screen, it’s because it uses an accelerometer in exactly the same way as
the program above. Game controllers also contain accelerometers to help you
steer and move around in games.

Musical Mayhem

One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it
lets you easily link different capabilities of the device together. For
example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to
attach pin 0 and GND to the positive and negative inputs on the speaker - it
doesn’t matter which way round they are connected to the speaker.

[image: ../_images/pin0-gnd.png]
What happens if we take the readings from the accelerometer and play them as
pitches? Let’s find out:

from microbit import *
import music

while True:
 music.pitch(accelerometer.get_y(), 10)

The key line is at the end and remarkably simple. We nest the reading from
the Y axis as the frequency to feed into the music.pitch method. We only
let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it
is constantly reacting to changes in the Y axis measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is
positive it’ll change the pitch of the tone played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How
would you improve the program to make the micro:bit sound more musical?

Gestures

The really interesting side-effect of having an accelerometer is gesture
detection. If you move your BBC micro:bit in a certain way (as a gesture) then
MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down,
left, right, face up, face down, freefall, 3g, 6g,
8g, shake. Gestures are always represented as strings. While most of
the names should be obvious, the 3g, 6g and 8g gestures apply when
the device encounters these levels of g-force (like when an astronaut is
launched into space).

To get the current gesture use the accelerometer.current_gesture method.
Its result is going to be one of the named gestures listed above. For example,
this program will only make your device happy if it is face up:

from microbit import *

while True:
 gesture = accelerometer.current_gesture()
 if gesture == "face up":
 display.show(Image.HAPPY)
 else:
 display.show(Image.ANGRY)

Once again, because we want the device to react to changing circumstances we
use a while loop. Within the scope of the loop the current gesture is
read and put into gesture. The if conditional checks if gesture is
equal to "face up" (Python uses == to test for equality, a single
equals sign = is used for assignment - just like how we assign the gesture
reading to the gesture object). If the gesture is equal to "face up"
then use the display to show a happy face. Otherwise, the device is made to
look angry!

Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask
it a yes/no question, shake it and wait for it to reveal the truth. It’s rather
easy to turn into a program:

from microbit import *
import random

answers = [
 "It is certain",
 "It is decidedly so",
 "Without a doubt",
 "Yes, definitely",
 "You may rely on it",
 "As I see it, yes",
 "Most likely",
 "Outlook good",
 "Yes",
 "Signs point to yes",
 "Reply hazy try again",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it"
 "My reply is no",
 "My sources say no",
 "Outlook not so good",
 "Very doubtful",
]

while True:
 display.show("8")
 if accelerometer.was_gesture("shake"):
 display.clear()
 sleep(1000)
 display.scroll(random.choice(answers))

Most of the program is a list called answers. The actual game is in the
while loop at the end.

The default state of the game is to show the character "8". However, the
program needs to detect if it has been shaken. The was_gesture method uses
its argument (in this case, the string "shake" because we want to detect
a shake) to return a True / False response. If the device was shaken
the if conditional drops into its block of code where it clears the screen,
waits for a second (so the device appears to be thinking about your question)
and displays a randomly chosen answer.

Why not ask it if this is the greatest program ever written? What could you do
to “cheat” and make the answer always positive or negative? (Hint: use the
buttons.)

Direction

There is a compass on the BBC micro:bit. If you ever make a weather station
use the device to work out the wind direction.

Compass

It can also tell you the direction of North like this:

from microbit import *

compass.calibrate()

while True:
 needle = ((15 - compass.heading()) // 30) % 12
 display.show(Image.ALL_CLOCKS[needle])

You must calibrate the compass before taking readings. Failure to do so
will just produce garbage results. The calibration method runs a fun little
game to help the device work out where it is in relation to the Earth’s
magnetic field.

The program takes the compass.heading and, using some simple yet
cunning maths (floor division // and modulo % ~ look up what these
mean), works out the number of the clock hand to use to display on the screen
so that it is pointing roughly North.

Network

It is possible to connect devices together to send and receive
messages to and from each other. This is called a network. A network of
interconnected networks is called an internet. The Internet is an internet
of all the internets.

Networking is hard and this is reflected in the program described below.
However, the beautiful thing about this project is it contains all the common
aspects of network programming you need to know about. It’s also remarkably
simple and fun.

But first, let’s set the scene...

Connection

Imagine a network as a series of layers. At the very bottom is the most
fundamental aspect of communication: there needs to be some sort of way for
a signal to get from one device to the other. Sometimes this is done via a
radio connection, but in this example we’re simply going to use two wires.

[image: ../_images/network.png]
It is upon this foundation that we can build all the other layers in the
network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile
leads. Both use pin 1 for output and pin 2 for input. The output from one
device is connected to the input on the other. It’s a bit like knowing which
way round to hold a telephone handset - one end has a microphone (the input)
and the other a speaker (the output). The recording of your voice via your
microphone is played out of the other person’s speaker. If you hold the
phone the wrong way up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!

Signal

The next layer in the network stack is the signal. Often this will depend
upon the characteristics of the connection. In our example it’s simply
digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the IO pins like this:

pin1.write_digital(1) # switch the signal on
pin1.write_digital(0) # switch the signal off
input = pin2.read_digital() # read the value of the signal (either 1 or 0)

The next step involves describing how to use and handle a signal. For that we
need a...

Protocol

If you ever meet the Queen there are expectations about how you ought to
behave. For example, when she arrives you may bow or curtsey, if she offers her
hand politely shake it, refer to her as “your majesty” and thereafter as
“ma’am” and so on. This set of rules is called the royal protocol. A protocol
explains how to behave given a specific situation (such as meeting the
Queen). A protocol is pre-defined to ensure everyone understands what’s going
on before a given situation arises.

[image: ../_images/queen.jpg]
It is for this reason that we define and use protocols for communicating
messages via a computer network. Computers need to agree before hand how to
send and receive messages. Perhaps the best known protocol is the
hypertext transfer protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is
Morse code. It defines how to send character-based messages via on/off signals
of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (-) whereas short durations are dots (.).
By combining dashes and dots Morse defines a way to send characters. For
example, here’s how the standard Morse alphabet is defined:

.- A --- J ... S .---- 1 ----. 9
-... B -.- K - T ..--- 2 ----- 0
-.-. C .-.. L ..- U ...-- 3
-.. D -- M ...- V - 4
. E -. N .-- W 5
..-. F --- O -..- X -.... 6
--. G .--. P -.-- Y --... 7
.... H --.- Q --.. Z ---.. 8
.. I .-. R

Given the chart above, to send the character “H” the signal is switched on four
times for a short duration, indicating four dots (....). For the letter
“L” the signal is also switched on four times, but the second signal has a
longer duration (.-..).

Obviously, the timing of the signal is important: we need to tell a dot from a
dash. That’s another point of a protocol, to agree such things so everyone’s
implementation of the protocol will work with everyone elses. In this instance
we’ll just say that:

	A signal with a duration less than 250 milliseconds is a dot.

	A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.

	Any other duration of signal is ignored.

	A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.

In this way, the sending of a letter “H” is defined as four “on” signals that
last no longer than 250 milliseconds each, followed by a pause of greater than
500 milliseconds (indicating the end of the character).

Message

We’re finally at a stage where we can build a message - a message that actually
means something to us humans. This is the top-most layer of our network
stack.

Using the protocol defined above I can send the following sequence of signals
down the physical wire to the other micro:bit:

...././.-../.-../---/.--/---/.-./.-../-..

Can you work out what it says?

Application

It’s all very well having a network stack, but you also need a way to
interact with it - some form of application to send and receive messages.
While HTTP is interesting most people don’t know about it and let their
web-browser handle it - the underlying network stack of the world wide web
is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should
it work, from the user’s point of view?

Obviously, to send a message you should be able to input dots and dashes (we
can use button A for that). If we want to see the message we sent or just
received we should be able to trigger it to scroll across the display (we can
use button B for that). Finally, this being Morse code, if a speaker is
attached, we should be able to play the beeps as a form of aural feedback while
the user is entering their message.

The End Result

Here’s the program, in all its glory and annotated with plenty of comments so
you can see what’s going on:

from microbit import *
import music

A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
 ".-": "A",
 "-...": "B",
 "-.-.": "C",
 "-..": "D",
 ".": "E",
 "..-.": "F",
 "--.": "G",
 "....": "H",
 "..": "I",
 ".---": "J",
 "-.-": "K",
 ".-..": "L",
 "--": "M",
 "-.": "N",
 "---": "O",
 ".--.": "P",
 "--.-": "Q",
 ".-.": "R",
 "...": "S",
 "-": "T",
 "..-": "U",
 "...-": "V",
 ".--": "W",
 "-..-": "X",
 "-.--": "Y",
 "--..": "Z",
 ".----": "1",
 "..---": "2",
 "...--": "3",
 "....-": "4",
 ".....": "5",
 "-....": "6",
 "--...": "7",
 "---..": "8",
 "----.": "9",
 "-----": "0"
}

def decode(buffer):
 # Attempts to get the buffer of Morse code data from the lookup table. If
 # it's not there, just return a full stop.
 return MORSE_CODE_LOOKUP.get(buffer, '.')

How to display a single dot.
DOT = Image("00000:"
 "00000:"
 "00900:"
 "00000:"
 "00000:")

How to display a single dash.
DASH = Image("00000:"
 "00000:"
 "09990:"
 "00000:"
 "00000:")

To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500

Holds the incoming Morse signals.
buffer = ''
Holds the translated Morse as characters.
message = ''
The time from which the device has been waiting for the next keypress.
started_to_wait = running_time()

Put the device in a loop to wait for and react to key presses.
while True:
 # Work out how long the device has been waiting for a keypress.
 waiting = running_time() - started_to_wait
 # Reset the timestamp for the key_down_time.
 key_down_time = None
 # If button_a is held down, then...
 while button_a.is_pressed():
 # Play a beep - this is Morse code y'know ;-)
 music.pitch(880, 10)
 # Set pin1 (output) to "on"
 pin1.write_digital(1)
 # ...and if there's not a key_down_time then set it to now!
 if not key_down_time:
 key_down_time = running_time()
 # Alternatively, if pin2 (input) is getting a signal, pretend it's a
 # button_a key press...
 while pin2.read_digital():
 if not key_down_time:
 key_down_time = running_time()
 # Get the current time and call it key_up_time.
 key_up_time = running_time()
 # Set pin1 (output) to "off"
 pin1.write_digital(0)
 # If there's a key_down_time (created when button_a was first pressed
 # down).
 if key_down_time:
 # ... then work out for how long it was pressed.
 duration = key_up_time - key_down_time
 # If the duration is less than the max length for a "dot" press...
 if duration < DOT_THRESHOLD:
 # ... then add a dot to the buffer containing incoming Morse codes
 # and display a dot on the display.
 buffer += '.'
 display.show(DOT)
 # Else, if the duration is less than the max length for a "dash"
 # press... (but longer than that for a DOT ~ handled above)
 elif duration < DASH_THRESHOLD:
 # ... then add a dash to the buffer and display a dash.
 buffer += '-'
 display.show(DASH)
 # Otherwise, any other sort of keypress duration is ignored (this isn't
 # needed, but added for "understandability").
 else:
 pass
 # The button press has been handled, so reset the time from which the
 # device is starting to wait for a button press.
 started_to_wait = running_time()
 # Otherwise, there hasn't been a button_a press during this cycle of the
 # loop, so check there's not been a pause to indicate an end of the
 # incoming Morse code character. The pause must be longer than a DASH
 # code's duration.
 elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
 # There is a buffer and it's reached the end of a code so...
 # Decode the incoming buffer.
 character = decode(buffer)
 # Reset the buffer to empty.
 buffer = ''
 # Show the decoded character.
 display.show(character)
 # Add the character to the message.
 message += character
 # Finally, if button_b was pressed while all the above was going on...
 if button_b.was_pressed():
 # ... display the message,
 display.scroll(message)
 # then reset it to empty (ready for a new message).
 message = ''

How would you improve it? Can you change the definition of a dot and a dash so
speedy Morse code users can use it? What happens if both devices are sending at
the same time? What might you do to handle this situation?

Next Steps

These tutorials are only the first steps in using MicroPython with the
BBC micro:bit. A musical analogy: you’ve got a basic understanding of
a very simple instrument and confidently play “Three Blind Mice”.

This is an achievement to build upon.

Ahead of you is an exciting journey to becoming a virtuoso coder.

You will encounter frustration, failure and foolishness. When you do please
remember that you’re not alone. Python has a secret weapon: the most amazing
community of programmers on the planet. Connect with this community and you
will make friends, find mentors, support each other and share resources.

The examples in the tutorials are simple to explain but may not be the simplest
or most efficient implementations. We’ve left out lots of really fun stuff so
we could concentrate on arming you with the basics. If you really want to
know how to make MicroPython fly on the BBC micro:bit then read the API
reference documentation. It contains information about all the capabilities
available to you.

Explore, experiment and be fearless trying things out ~ for these are the
attributes of a virtuoso coder. To encourage you we have hidden a number of
Easter eggs in MicroPython and the code editors (both TouchDevelop and Mu).
They’re fun rewards for looking “under the hood” and “poking with a stick”.

Such skill in Python is valuable: it’s one of the world’s most popular
professional programming languages.

Amaze us with your code! Make things that delight us! Most of all, have fun!

Happy hacking!

micro:bit Micropython API

Warning

As we work towards a 1.0 release, this API is subject to frequent changes. This page reflects the current micro:bit API in a developer-friendly (but not necessarily kid-friendly) way.

The microbit module

Everything directly related to interacting with the hardware lives in the microbit module. For ease of use it’s recommended you start all scripts with:

from microbit import *

The following documentation assumes you have done this.

There are a few functions available directly:

sleep for the given number of milliseconds.
sleep(ms)
returns the number of milliseconds since the micro:bit was last switched on.
running_time()
makes the micro:bit enter panic mode (this usually happens when the DAL runs
out of memory, and causes a sad face to be drawn on the display). The error
code can be any arbitrary integer value.
panic(error_code)
resets the micro:bit.
reset()

The rest of the functionality is provided by objects and classes in the microbit module, as described below.

Note that the API exposes integers only (ie no floats are needed, but they may be accepted). We thus use milliseconds for the standard time unit.

Buttons

There are 2 buttons:

button_a
button_b

These are both objects and have the following methods:

returns True or False to indicate if the button is pressed at the time of
the method call.
button.is_pressed()
returns True or False to indicate if the button was pressed since the device
started or the last time this method was called.
button.was_pressed()
returns the running total of button presses.
button.get_presses()
resets the running total of button presses to zero.
button.reset_presses()

The LED display

The LED display is exposed via the display object:

gets the brightness of the pixel (x,y). Brightness can be from 0 (the pixel
is off) to 9 (the pixel is at maximum brightness).
display.get_pixel(x, y)
sets the brightness of the pixel (x,y) to val (between 0 [off] and 9 [max
brightness], inclusive).
display.set_pixel(x, y, val)
clears the display.
display.clear()
shows the image.
display.show(image, delay=0, wait=True, loop=False, clear=False)
shows each image or letter in the iterable, with delay ms. in between each.
display.show(iterable, delay=400, wait=True, loop=False, clear=False)
scrolls a string across the display (more exciting than display.show for
written messages).
display.scroll(string, delay=400)

Pins

Provide digital and analog input and output functionality, for the pins in the connector. Some pins are connected internally to the I/O that drives the LED matrix and the buttons.

Each pin is provided as an object directly in the microbit module. This keeps the API relatively flat, making it very easy to use:

	pin0

	pin1

	...

	pin15

	pin16

	Warning: P17-P18 (inclusive) are unavailable.

	pin19

	pin20

Each of these pins are instances of the MicroBitPin class, which offers the following API:

value can be 0, 1, False, True
pin.write_digital(value)
returns either 1 or 0
pin.read_digital()
value is between 0 and 1023
pin.write_analog(value)
returns an integer between 0 and 1023
pin.read_analog()
sets the period of the PWM output of the pin in milliseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period(int)
sets the period of the PWM output of the pin in microseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period_microseconds(int)
returns boolean
pin.is_touched()

Images

Note

You don’t always need to create one of these yourself - you can access the
image shown on the display directly with display.image. display.image
is just an instance of Image, so you can use all of the same methods.

Images API:

creates an empty 5x5 image
image = Image()
create an image from a string - each character in the string represents an
LED - 0 (or space) is off and 9 is maximum brightness. The colon ":"
indicates the end of a line.
image = Image('90009:09090:00900:09090:90009:')
create an empty image of given size
image = Image(width, height)
initialises an Image with the specified width and height. The buffer
should be an array of length width * height
image = Image(width, height, buffer)

methods
returns the image's width (most often 5)
image.width()
returns the image's height (most often 5)
image.height()
sets the pixel at the specified position (between 0 and 9). May fail for
constant images.
image.set_pixel(x, y, value)
gets the pixel at the specified position (between 0 and 9)
image.get_pixel(x, y)
returns a new image created by shifting the picture left 'n' times.
image.shift_left(n)
returns a new image created by shifting the picture right 'n' times.
image.shift_right(n)
returns a new image created by shifting the picture up 'n' times.
image.shift_up(n)
returns a new image created by shifting the picture down 'n' times.
image.shift_down(n)
get a compact string representation of the image
repr(image)
get a more readable string representation of the image
str(image)

#operators
returns a new image created by superimposing the two images
image + image
returns a new image created by multiplying the brightness of each pixel by n
image * n

built-in images.
Image.HEART
Image.HEART_SMALL
Image.HAPPY
Image.SMILE
Image.SAD
Image.CONFUSED
Image.ANGRY
Image.ASLEEP
Image.SURPRISED
Image.SILLY
Image.FABULOUS
Image.MEH
Image.YES
Image.NO
Image.CLOCK12 # clock at 12 o' clock
Image.CLOCK11
... # many clocks (Image.CLOCKn)
Image.CLOCK1 # clock at 1 o'clock
Image.ARROW_N
... # arrows pointing N, NE, E, SE, S, SW, W, NW (microbit.Image.ARROW_direction)
Image.ARROW_NW
Image.TRIANGLE
Image.TRIANGLE_LEFT
Image.CHESSBOARD
Image.DIAMOND
Image.DIAMOND_SMALL
Image.SQUARE
Image.SQUARE_SMALL
Image.RABBIT
Image.COW
Image.MUSIC_CROTCHET
Image.MUSIC_QUAVER
Image.MUSIC_QUAVERS
Image.PITCHFORK
Image.XMAS
Image.PACMAN
Image.TARGET
Image.TSHIRT
Image.ROLLERSKATE
Image.DUCK
Image.HOUSE
Image.TORTOISE
Image.BUTTERFLY
Image.STICKFIGURE
Image.GHOST
Image.SWORD
Image.GIRAFFE
Image.SKULL
Image.UMBRELLA
Image.SNAKE
built-in lists - useful for animations, e.g. display.show(Image.ALL_CLOCKS)
Image.ALL_CLOCKS
Image.ALL_ARROWS

The accelerometer

The accelerometer is accessed via the accelerometer object:

read the X axis of the device. Measured in milli-g.
accelerometer.get_x()
read the Y axis of the device. Measured in milli-g.
accelerometer.get_y()
read the Z axis of the device. Measured in milli-g.
accelerometer.get_z()
get all three X, Y and Z readings (listed in that order).
accelerometer.get_values()
return the name of the current gesture.
accelerometer.current_gesture()
return True or False to indicate if the named gesture is currently active.
accelerometer.is_gesture(name)
return True or False to indicate if the named gesture was active since the
last call.
accelerometer.was_gesture(name)
return a tuple of the gesture history. The most recent is listed last.
accelerometer.get_gestures()
clears the gesture history.
accelerometer.reset_gestures()

The recognised gestures are: up, down, left, right, face up, face down, freefall, 3g, 6g, 8g, shake.

The compass

The compass is accessed via the compass object:

calibrate the compass (this is needed to get accurate readings).
compass.calibrate()
return a numeric indication of degrees offset from "north".
compass.heading()
return an numeric indication of the strength of magnetic field around
the micro:bit.
compass.get_field_strength()
returns True or False to indicate if the compass is calibrated.
compass.is_calibrated()
resets the compass to a pre-calibration state.
compass.clear_calibration()

I2C bus

There is an I2C bus on the micro:bit that is exposed via the i2c object. It has the following methods:

read n bytes from device with addr; repeat=True means a stop bit won't
be sent.
i2c.read(addr, n, repeat=False)
write buf to device with addr; repeat=True means a stop bit won't be sent.
i2c.write(addr, buf, repeat=False)

UART

Use uart to communicate with a serial device connected to the device’s I/O pins:

set up communication (use pins 0 [TX] and 1 [RX]) with a baud rate of 9600.
uart.init()
return True or False to indicate if there are incoming characters waiting to
be read.
uart.any()
return (read) n incoming characters.
uart.read(n)
return (read) as much incoming data as possible.
uart.readall()
return (read) all the characters to a newline character is reached.
uart.readline()
read bytes into the referenced buffer.
uart.readinto(buffer)
write bytes from the buffer to the connected device.
uart.write(buffer)

Microbit Module

The microbit module gives you access to all the hardware that is built-in
into your board.

Functions

	
microbit.panic(n)

	Enter a panic mode. Requires restart. Pass in an arbitrary integer <= 255
to indicate a status:

microbit.panic(404)

	
microbit.reset()

	Restart the board.

	
microbit.sleep(n)

	Wait for n milliseconds. One second is 1000 milliseconds, so:

microbit.sleep(1000)

will pause the execution for one second. n can be an integer or
a floating point number.

	
microbit.running_time()

	Return the number of milliseconds since the board was switched on or
restarted.

	
microbit.temperature()

	Return the temperature of the micro:bit in degrees Celcius.

Attributes

	Buttons

	Input/Output Pins

Classes

	Image

Modules

	Display

	UART

	SPI

	I²C

	Accelerometer

	Compass

Buttons

There are two buttons on the board, called button_a and button_b.

Attributes

	
button_a

	A Button instance (see below) representing the left button.

	
button_b

	Represents the right button.

Classes

	
class Button

	Represents a button.

Note

This class is not actually available to the user, it is only used by
the two button instances, which are provided already initialized.

	
is_pressed()

	Returns True if the specified button button is pressed, and
False otherwise.

	
was_pressed()

	Returns True or False to indicate if the button was pressed
since the device started or the last time this method was called.

	
get_presses()

	Returns the running total of button presses.

	
reset_presses()

	Resets the running total of button presses to zero.

Example

import microbit

while True:
 if microbit.button_a.is_pressed() and microbit.button_b.is_pressed():
 microbit.display.scroll("AB")
 break
 elif microbit.button_a.is_pressed():
 microbit.display.scroll("A")
 elif microbit.button_b.is_pressed():
 microbit.display.scroll("B")
 microbit.sleep(100)

Input/Output Pins

The pins are your board’s way to communicate with external devices connected to
it. There are 19 pins for your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

For example, the script below will change the display on the micro:bit
depending upon the digital reading on pin 0:

from microbit import *

while True:
 if pin0.read_digital():
 display.show(Image.HAPPY)
 else:
 display.show(Image.SAD)

Pin Functions

[image: _images/pinout.png]
Those pins are available as attributes on the microbit
module:microbit.pin0 - microbit.pin20.

	Pin
	Type
	Function

	0
	Touch
	Pad 0

	1
	Touch
	Pad 1

	2
	Touch
	Pad 2

	3
	Analog
	Column 1

	4
	Analog
	Column 2

	5
	Digital
	Button A

	6
	Digital
	Row 2

	7
	Digital
	Row 1

	8
	Digital
	

	9
	Digital
	Row 3

	10
	Analog
	Column 3

	11
	Digital
	Button B

	12
	Digital
	

	13
	Digital
	SPI MOSI

	14
	Digital
	SPI MISO

	15
	Digital
	SPI SCK

	16
	Digital
	

	
	
	

	19
	Digital
	I2C SCL

	20
	Digital
	I2C SDA

The above table summarizes the pins available, their types (see below) and what
they are internally connected to.

Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier
can do it – by modulating the voltage on the pin. Those pins can only either
enable the full 3.3V output, or pull it down to 0V. However, it is still
possible to control the brightness of LEDs or speed of an electric motor, by
switching that voltage on and off very fast, and controlling how long it is on
and how long it is off. This technique is called Pulse-Width Modulation (PWM),
and that’s what the write_analog method below does.

[image: _images/pwm.png]
Above you can see the diagrams of three different PWM signals. All of them have
the same period (and thus frequency), but they have different duty cycles.

The first one would be generated by write_analog(511), as it has exactly
50% duty – the power is on half of the time, and off half of the time. The
result of that is that the total energy of this signal is the same, as if it
was 1.65V instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with
write_analog(255). It has similar effect as if 0.825V was being output on
that pin.

The third signal has 75% duty cycle, and can be generated with
write_analog(767). It has three times as much energy, as the second signal,
and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia
by themselves, or LEDs, which blink too fast for the human eye to see the
difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like
the very old computer games – mostly because those games also only could do
that.

Classes

There are three kinds of pins, differing in what is available for them. They
are represented by the below classes. Note that they form a hierarchy, so that
each class has all the functionality of the previous class, and adds its own
to that.

Note

Those classes are not actually available for the user, you can’t create
new instances of them. You can only use the instances already provided,
representing the physical pins on your board.

	
class microbit.MicroBitDigitalPin

	
	
read_digital()

	Return 1 if the pin is high, and 0 if it’s low.

	
write_digital(value)

	Set the pin to high if value is 1, or to low, if it is 0.

	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).

	
write_analog(value)

	Output a PWM signal on the pin, with the duty cycle proportional to
the provided value. The value may be either an integer or a
floating point number between 0 (0% duty cycle) and 1023 (100% duty).

	
set_analog_period(period)

	Set the period of the PWM signal being output to period in
milliseconds. The minimum valid value is 1ms.

	
set_analog_period_microseconds(period)

	Set the period of the PWM signal being output to period in
microseconds. The minimum valid value is 35µs.

	
class microbit.MicroBitTouchPin

	
	
is_touched()

	Return True if the pin is being touched with a finger, otherwise
return False.

This test is done by measuring the capacitance of the pin together with
whatever is connected to it. Human body has quite a large capacitance,
so touching the pin gives a dramatic change in reading, which can be
detected.

Image

The Image class is used to create images that can be displayed easily on
the device’s LED matrix. Given an image object it’s possible to display it via
the device API:

display.show(Image.HAPPY)

[image: _images/image-smile.png]

Classes

	
class microbit.Image(string)

	
class microbit.Image(width=None, height=None, buffer=None)

	If string is used, it has to consist of digits 0-9 arranged into
lines, describing the image, for example:

image = Image("90009:"
 "09090:"
 "00900:"
 "09090:"
 "90009")

will create a 5×5 image of an X. The end of a line is indicated by a colon.
It’s also possible to use a newline (n) to indicate the end of a line
like this:

image = Image("90009\n"
 "09090\n"
 "00900\n"
 "09090\n"
 "90009")

The other form creates an empty image with width columns and
height rows. Optionally buffer can be an array of
width``×``height integers in range 0-9 to initialize the image.

	
width()

	Return the number of columns in the image.

	
height()

	Return the numbers of rows in the image.

	
set_pixel(x, y, value)

	Set the brightness of the pixel at column x and row y to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the build-in
read-only images, like Image.HEART.

	
get_pixel(x, y)

	Return the brightness of pixel at column x and row y as an
integer between 0 and 9.

	
shift_left(n)

	Return a new image created by shifting the picture left by n
columns.

	
shift_right(n)

	Same as image.shift_left(-n).

	
shift_up(n)

	Return a new image created by shifting the picture up by n rows.

	
shift_down(n)

	Same as image.shift_up(-n).

Attributes

The Image class also has the following built-in instances of itself
included as its attributes (the attribute names indicate what the image
represents):

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

Finally, related collections of images have been grouped together:

* ``Image.ALL_CLOCKS``
* ``Image.ALL_ARROWS``

Operations

repr(image)

Get a compact string representation of the image.

str(image)

Get a readable string representation of the image.

image1 + image2

Create a new image by adding the brightness values from the two images for
each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

Display

This module controls the 5×5 LED display on the front of your board. It can
be used to display images, animations and even text.

[image: _images/scroll-hello.gif]

Functions

	
microbit.display.get_pixel(x, y)

	Return the brightness of the LED at column x and row y as an
integer between 0 (off) and 9 (bright).

	
microbit.display.set_pixel(x, y, value)

	Set the brightness of the LED at column x and row y to value,
which has to be an integer between 0 and 9.

	
microbit.display.clear()

	Set the brightness of all LEDs to 0 (off).

	
microbit.display.show(image)

	Display the image.

	
microbit.display.show(iterable, delay, wait=True, loop=False, clear=False)

	Display images or letters from the iterable in sequence, with delay
milliseconds between them.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If clear is True, the display will be cleared after the iterable has finished.

	
microbit.display.scroll(string, delay=400)

	Similar to show, but scrolls the string horizontally instead. The
delay parameter controls how fast the text is scrolling. This function
blocks until it is finished.

UART

The uart module lets you talk to a device connected to your board using
a serial interface.

Functions

	
microbit.uart.init(baudrate=9600, bits=8, parity=None, stop=1, pins=None)

	Initialize serial communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

Warning

Initializing the UART will cause the Python console on USB to become
unaccessible, as it uses the same hardware. There is currently no way
to bring the console back, without restarting the module.

The baudrate defines the speed of communication. Common baud
rates include:

	9600

	14400

	19200

	28800

	38400

	57600

	115200

The bits defines the size of bytes being transmitted, and the board
only supports 8. The parity parameter defines how parity is checked,
and it can be None, microbit.uart.ODD or microbit.uart.EVEN.
The stop parameter tells the number of stop bits, and has to be 1 for
this board.

If no pins are specified, microbit.pin0 is used as the TX pin, and
microbit.pin1 as the RX pin. You can also specify which pins you want
by passing a tuple of two pins as pins, the first one being TX, and the
second one, RX.

Note

When connecting the device, make sure you “cross” the wires – the TX
pin on your board needs to be connected with the RX pin on the device,
and the RX pin – with the TX pin on the device. Also make sure the
ground pins of both devices are connected.

	
uart.any()

	Return True if any characters waiting, else False.

	
uart.read([nbytes])

	Read characters. If nbytes is specified then read at most that many
bytes.

	
uart.readall()

	Read as much data as possible.

Return value: a bytes object or None on timeout.

	
uart.readinto(buf[, nbytes])

	Read bytes into the buf. If nbytes is specified then read at most
that many bytes. Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.

	
uart.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is
included in the returned bytes.

	
uart.write(buf)

	Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

SPI

The spi module lets you talk to a device connected to your board using
a serial peripheral interface (SPI) bus. SPI uses a so-called master-slave
architecture with a single master. You will need to specify the connections
for three signals:

	SCLK : Serial Clock (output from master).

	MOSI : Master Output, Slave Input (output from master).

	MISO : Master Input, Slave Output (output from slave).

Functions

	
microbit.spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13, mosi=pin15, miso=pin14)

	Initialize SPI communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only
bits=8 is supported. However, this may change in the future.

The mode determines the combination of clock polarity and phase
according to the following convention, with polarity as the high order bit
and phase as the low order bit:

	SPI Mode
	Polarity (CPOL)
	Phase (CPHA)

	0
	0
	0

	1
	0
	1

	2
	1
	0

	3
	1
	1

Polarity (aka CPOL) 0 means that the clock is at logic value 0 when idle
and goes high (logic value 1) when active; polarity 1 means the clock is
at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock,
and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for
each type of signal.

	
spi.read(nbytes)

	Read at most nbytes. Returns what was read.

	
spi.write(buffer)

	Write the buffer of bytes to the bus.

	
spi.write_readinto(out, in)

	Write the out buffer to the bus and read any response into the in
buffer. The length of the buffers should be the same. The buffers can be
the same object.

I²C

The i2c module lets you communicate with devices connected to your board
using the I²C bus protocol. There can be multiple slave devices connected at
the same time, and each one has its own unique address, that is either fixed
for the device or configured on it. Your board acts as the I²C master.

We use 7-bit addressing for devices because of the reasons stated
here [http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing].

This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to
send and how to interpret the responses, depends on the device in question and
should be described separately in that device’s documentation.

Functions

	
microbit.i2c.read(addr, n, repeat=False)

	Read n bytes from the device with 7-bit address addr. If repeat
is True, no stop bit will be sent.

	
microbit.i2c.write(addr, buf, repeat=False)

	Write bytes from buf to the device with 7-bit address addr. If
repeat is True, no stop bit will be sent.

Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the
device’s SDA pin to micro:bit pin 20. You also must connect the device’s
ground to the micro:bit ground (pin GND). You may need to power the device
using an external power supply or the micro:bit.

There are internal pull-up resistors on the I²C lines of the board, but with
particularly long wires or large number of devices you may need to add
additional pull-up resistors, to ensure noise-free communication.

Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer
also provides convenience functions for detecting gestures. The
recognised gestures are: up, down, left, right, face up,
face down, freefall, 3g, 6g, 8g, shake.

Functions

	
microbit.accelerometer.get_x()

	Get the acceleration measurement in the x axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_y()

	Get the acceleration measurement in the y axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_z()

	Get the acceleration measurement in the z axis, as a positive or
negative integer, depending on the direction.

	
microbit.accelerometer.get_values()

	Get the acceleration measurements in all axes at once, as a three-element
tuple of integers ordered as X, Y, Z.

	
microbit.accelerometer.current_gesture()

	Return the name of the current gesture.

Note

MicroPython understands the following gesture names: "up", "down",
"left", "right", "face up", "face down", "freefall",
"3g", "6g", "8g", "shake". Gestures are always
represented as strings.

	
microbit.accelerometer.is_gesture(name)

	Return True or False to indicate if the named gesture is currently active.

	
microbit.accelerometer.was_gesture(name)

	Return True or False to indicate if the named gesture was active since the
last call.

	
microbit.accelerometer.get_gestures()

	Return a tuple of the gesture history. The most recent is listed last.

	
microbit.accelerometer.reset_gestures()

	Clears the gesture history.

Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an
answer.

Magic 8 ball by Nicholas Tollervey. February 2016.
#
Ask a question then shake.
#
This program has been placed into the public domain.
from microbit import *
import random

answers = [
 "It is certain",
 "It is decidedly so",
 "Without a doubt",
 "Yes, definitely",
 "You may rely on it",
 "As I see it, yes",
 "Most likely",
 "Outlook good",
 "Yes",
 "Signs point to yes",
 "Reply hazy try again",
 "Ask again later",
 "Better not tell you now",
 "Cannot predict now",
 "Concentrate and ask again",
 "Don't count on it"
 "My reply is no",
 "My sources say no",
 "Outlook not so good",
 "Very doubtful",
]

while True:
 display.show('8')
 if accelerometer.was_gesture('shake'):
 display.clear()
 sleep(1000)
 display.scroll(random.choice(answers))
 sleep(10)

Simple Slalom. Move the device to avoid the obstacles.

Simple Slalom by Larry Hastings, September 2015
#
This program has been placed into the public domain.

import microbit as m
import random

p = m.display.show

min_x = -1024
max_x = 1024
range_x = max_x - min_x

wall_min_speed = 400
player_min_speed = 200

wall_max_speed = 100
player_max_speed = 50

speed_max = 12

while True:

 i = m.Image('00000:'*5)
 s = i.set_pixel

 player_x = 2

 wall_y = -1
 hole = 0

 score = 0
 handled_this_wall = False

 wall_speed = wall_min_speed
 player_speed = player_min_speed

 wall_next = 0
 player_next = 0

 while True:
 t = m.running_time()
 player_update = t >= player_next
 wall_update = t >= wall_next
 if not (player_update or wall_update):
 next_event = min(wall_next, player_next)
 delta = next_event - t
 m.sleep(delta)
 continue

 if wall_update:
 # calculate new speeds
 speed = min(score, speed_max)
 wall_speed = wall_min_speed + int((wall_max_speed - wall_min_speed) * speed / speed_max)
 player_speed = player_min_speed + int((player_max_speed - player_min_speed) * speed / speed_max)

 wall_next = t + wall_speed
 if wall_y < 5:
 # erase old wall
 use_wall_y = max(wall_y, 0)
 for wall_x in range(5):
 if wall_x != hole:
 s(wall_x, use_wall_y, 0)

 wall_reached_player = (wall_y == 4)
 if player_update:
 player_next = t + player_speed
 # find new x coord
 x = m.accelerometer.get_x()
 x = min(max(min_x, x), max_x)
 # print("x accel", x)
 s(player_x, 4, 0) # turn off old pixel
 x = ((x - min_x) / range_x) * 5
 x = min(max(0, x), 4)
 x = int(x + 0.5)
 # print("have", position, "want", x)

 if not handled_this_wall:
 if player_x < x:
 player_x += 1
 elif player_x > x:
 player_x -= 1
 # print("new", position)
 # print()

 if wall_update:
 # update wall position
 wall_y += 1
 if wall_y == 7:
 wall_y = -1
 hole = random.randrange(5)
 handled_this_wall = False

 if wall_y < 5:
 # draw new wall
 use_wall_y = max(wall_y, 0)
 for wall_x in range(5):
 if wall_x != hole:
 s(wall_x, use_wall_y, 6)

 if wall_reached_player and not handled_this_wall:
 handled_this_wall = True
 if (player_x != hole):
 # collision! game over!
 break
 score += 1

 if player_update:
 s(player_x, 4, 9) # turn on new pixel

 p(i)

 p(i.SAD)
 m.sleep(1000)
 m.display.scroll("Score:" + str(score))

 while True:
 if (m.button_a.is_pressed() and m.button_a.is_pressed()):
 break
 m.sleep(100)

Compass

This module lets you access the built-in electronic compass. Before using,
the compass should be calibrated, otherwise the readings may be wrong.

Warning

Calibrating the compass will cause your program to pause until calibration
is complete. Calibration consists of a little game to draw a circle on the
LED display by rotating the device.

Functions

	
microbit.compass.calibrate()

	Starts the calibration process. An instructive message will be scrolled
to the user after which they will need to rotate the device in order to
draw a circle on the LED display.

	
microbit.compass.is_calibrated()

	Returns True if the compass has been successfully calibrated, and
returns False otherwise.

	
microbit.compass.clear_calibration()

	Undoes the calibration, making the compass uncalibrated again.

	
microbit.compass.get_x()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_y()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_z()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.heading()

	Gives the compass heading, calculated from the above readings, as an
integer in the range from 0 to 360, representing the angle in degrees,
clockwise, with north as 0.

	
microbit.compass.get_field_strength()

	Returns an integer indication of the magnitude of the magnetic field around
the device.

Example

"""
 compass.py
    ~~~~~~~~~~

    Creates a compass.

    The user will need to calibrate the compass first. The compass uses the
    built-in clock images to display the position of the needle.

"""
from microbit import *


# Start calibrating
compass.calibrate()

# Try to keep the needle pointed in (roughly) the correct direction
while True:
    sleep(100)
    needle = ((15 - compass.heading()) // 30) % 12
    display.show(Image.ALL_CLOCKS[needle])











          

      

      

    

  

    
      
          
            
  
Input/Output Pins

The pins are your board’s way to communicate with external devices connected to
it. There are 19 pins for your disposal, numbered 0-16 and 19-20. Pins 17 and
18 are not available.

For example, the script below will change the display on the micro:bit
depending upon the digital reading on pin 0:

from microbit import *


while True:
    if pin0.read_digital():
        display.show(Image.HAPPY)
    else:
        display.show(Image.SAD)






Pin Functions

[image: _images/pinout.png]
Those pins are available as attributes on the microbit
module:microbit.pin0 - microbit.pin20.








	Pin
	Type
	Function




	0
	Touch
	Pad 0


	1
	Touch
	Pad 1


	2
	Touch
	Pad 2


	3
	Analog
	Column 1


	4
	Analog
	Column 2


	5
	Digital
	Button A


	6
	Digital
	Row 2


	7
	Digital
	Row 1


	8
	Digital
	 


	9
	Digital
	Row 3


	10
	Analog
	Column 3


	11
	Digital
	Button B


	12
	Digital
	 


	13
	Digital
	SPI MOSI


	14
	Digital
	SPI MISO


	15
	Digital
	SPI SCK


	16
	Digital
	 


	 
	 
	 


	19
	Digital
	I2C SCL


	20
	Digital
	I2C SDA





The above table summarizes the pins available, their types (see below) and what
they are internally connected to.


Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier
can do it – by modulating the voltage on the pin. Those pins can only either
enable the full 3.3V output, or pull it down to 0V. However, it is still
possible to control the brightness of LEDs or speed of an electric motor, by
switching that voltage on and off very fast, and controlling how long it is on
and how long it is off. This technique is called Pulse-Width Modulation (PWM),
and that’s what the write_analog method below does.

[image: _images/pwm.png]
Above you can see the diagrams of three different PWM signals. All of them have
the same period (and thus frequency), but they have different duty cycles.

The first one would be generated by write_analog(511), as it has exactly
50% duty – the power is on half of the time, and off half of the time. The
result of that is that the total energy of this signal is the same, as if it
was 1.65V instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with
write_analog(255). It has similar effect as if 0.825V was being output on
that pin.

The third signal has 75% duty cycle, and can be generated with
write_analog(767). It has three times as much energy, as the second signal,
and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia
by themselves, or LEDs, which blink too fast for the human eye to see the
difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like
the very old computer games – mostly because those games also only could do
that.






Classes

There are three kinds of pins, differing in what is available for them. They
are represented by the below classes. Note that they form a hierarchy, so that
each class has all the functionality of the previous class, and adds its own
to that.


Note

Those classes are not actually available for the user, you can’t create
new instances of them. You can only use the instances already provided,
representing the physical pins on your board.




	
class microbit.MicroBitDigitalPin

	
	
read_digital()

	Return 1 if the pin is high, and 0 if it’s low.






	
write_digital(value)

	Set the pin to high if value is 1, or to low, if it is 0.










	
class microbit.MicroBitAnalogDigitalPin

	
	
read_analog()

	Read the voltage applied to the pin, and return it as an integer
between 0 (meaning 0V) and 1023 (meaning 3.3V).






	
write_analog(value)

	Output a PWM signal on the pin, with the duty cycle proportional to
the provided value. The value may be either an integer or a
floating point number between 0 (0% duty cycle) and 1023 (100% duty).






	
set_analog_period(period)

	Set the period of the PWM signal being output to period in
milliseconds. The minimum valid value is 1ms.






	
set_analog_period_microseconds(period)

	Set the period of the PWM signal being output to period in
microseconds. The minimum valid value is 35µs.










	
class microbit.MicroBitTouchPin

	
	
is_touched()

	Return True if the pin is being touched with a finger, otherwise
return False.

This test is done by measuring the capacitance of the pin together with
whatever is connected to it. Human body has quite a large capacitance,
so touching the pin gives a dramatic change in reading, which can be
detected.















          

      

      

    

  

    
      
          
            
  
Music

This is the music module. You can use it to play simple tunes, provided
that you connect a speaker to your board. By default the music module
expects the speaker to be connected via pin 0:

[image: _images/music-pins.png]
This arrangement can be overridden (as discussed below).

To access this module you need to:

import music





We assume you have done this for the examples below.


Musical Notation

An individual note is specified thus:

NOTE[octave][:duration]





For example, A1:4 refers to the note “A” in octave 1 that lasts for four
ticks (a tick is an arbitrary length of time defined by a tempo setting
function - see below). If the note name R is used then it is treated as a
rest (silence).

Note names are case-insensitive.

The octave and duration parameters are states that carry over to
subsequent notes until re-specified. The default states are octave = 4
(containing middle C) and duration = 4 (a crotchet, given the default tempo
settings - see below).

For example, if 4 ticks is a crotchet, the following list is crotchet, quaver,
quaver, crotchet based arpeggio:

['c1:4', 'e:2', 'g', 'c2:4']





The opening of Beethoven’s 5th Symphony would be encoded thus:

['r4:2', 'g', 'g', 'g', 'eb:8', 'r:2', 'f', 'f', 'f', 'd:8']





The definition and scope of an octave conforms to the table listed on this
page about scientific pitch notation [https://en.wikipedia.org/wiki/Scientific_pitch_notation#Table_of_note_frequencies].  For example, middle “C” is 'c4' and
concert “A” (440) is 'a4'. Octaves start on the note “C”.




Functions


	
music.set_tempo(ticks=4, bpm=120)

	Sets the approximate tempo for playback.

A number of ticks (expressed as an integer) constitute a beat. Each beat is to be played at a certain frequency per minute (expressed as the more familiar BPM - beats per minute - also as an integer).

Suggested default values allow the following useful behaviour:


	music.set_tempo() - reset the tempo to default of ticks = 4, bpm = 120

	music.set_tempo(ticks=8) - change the “definition” of a beat

	music.set_tempo(bpm=180) - just change the tempo



To work out the length of a tick in milliseconds is very simple arithmetic: 60000/bpm/ticks_per_beat . For the default values that’s 60000/120/4 = 125 milliseconds or 1 beat = 500 milliseconds.






	
music.get_tempo()

	Gets the current tempo as a tuple of integers: (ticks, bpm).






	
music.play(music, pin=microbit.pin0, wait=True, loop=False)

	Plays music containing the musical DSL defined above.

If music is a string it is expected to be a single note such as,
'c1:4'.

If music is specified as a list of notes (as defined in the section on
the musical DSL, above) then they are played one after the other to perform
a melody.

In both cases, the duration and octave values are reset to
their defaults before the music (whatever it may be) is played.

An optional argument to specify the output pin can be used to override the
default of microbit.pin0.

If wait is set to True, this function is blocking.

If loop is set to True, the tune repeats until stop is called
(see below) or the blocking call is interrupted.






	
music.pitch(frequency, len=-1, pin=microbit.pin0, wait=True)

	Plays a pitch at the integer frequency given for the specified number of
milliseconds. For example, if the frequency is set to 440 and the length to
1000 then we hear a standard concert A for one second.

If wait is set to True, this function is blocking.

If len is negative the pitch is played continuously until either the
blocking call is interrupted or, in the case of a background call, a new
frequency is set or stop is called (see below).






	
music.stop(pin=microbit.pin0)

	Stops all music playback on a given pin.






	
music.reset()

	Resets the state of the following attributes in the following way:



	ticks = 4

	bpm = 120

	duration = 4

	octave = 4











Built in Melodies

For the purposes of education and entertainment, the module contains several
example tunes that are expressed as Python lists. They can be used like this:

>>> import music
>>> music.play(music.NYAN)





All the tunes are either out of copyright, composed by Nicholas H.Tollervey and
released to the public domain or have an unknown composer and are covered by a
fair (educational) use provision.

They are:



	DADADADUM - the opening to Beethoven’s 5th Symphony in C minor.

	ENTERTAINER - the opening fragment of Scott Joplin’s Ragtime classic “The Entertainer”.

	PRELUDE - the opening of the first Prelude in C Major of J.S.Bach’s 48 Preludes and Fugues.

	ODE - the “Ode to Joy” theme from Beethoven’s 9th Symphony in D minor.

	NYAN - the Nyan Cat theme (http://www.nyan.cat/). The composer is unknown. This is fair use for educational porpoises (as they say in New York).

	RINGTONE - something that sounds like a mobile phone ringtone. To be used to indicate an incoming message.

	FUNK - a funky bass line for secret agents and criminal masterminds.

	BLUES - a boogie-woogie 12-bar blues walking bass.

	BIRTHDAY - “Happy Birthday to You...” for copyright status see: http://www.bbc.co.uk/news/world-us-canada-34332853

	WEDDING - the bridal chorus from Wagner’s opera “Lohengrin”.

	FUNERAL - the “funeral march” otherwise known as Frédéric Chopin’s Piano Sonata No. 2 in B♭ minor, Op. 35.

	PUNCHLINE - a fun fragment that signifies a joke has been made.

	PYTHON - John Philip Sousa’s march “Liberty Bell” aka, the theme for “Monty Python’s Flying Circus” (after which the Python programming language is named).

	BADDY - silent movie era entrance of a baddy.

	CHASE - silent movie era chase scene.

	BA_DING - a short signal to indicate something has happened.

	WAWAWAWAA - a very sad trombone.

	JUMP_UP - for use in a game, indicating upward movement.

	JUMP_DOWN - for use in a game, indicating downward movement.

	POWER_UP - a fanfare to indicate an achievement unlocked.

	POWER_DOWN - a sad fanfare to indicate an achievement lost.









Example

"""
    music.py
    ~~~~~~~~

 Plays a simple tune using the Micropython music module.
 This example requires a speaker/buzzer/headphones connected to P0 and GND.
"""
from microbit import *
import music

play Prelude in C.
notes = [
 'c4:1', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5', 'c4', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5',
 'c4', 'd', 'g', 'd5', 'f5', 'g4', 'd5', 'f5', 'c4', 'd', 'g', 'd5', 'f5', 'g4', 'd5', 'f5',
 'b3', 'd4', 'g', 'd5', 'f5', 'g4', 'd5', 'f5', 'b3', 'd4', 'g', 'd5', 'f5', 'g4', 'd5', 'f5',
 'c4', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5', 'c4', 'e', 'g', 'c5', 'e5', 'g4', 'c5', 'e5',
 'c4', 'e', 'a', 'e5', 'a5', 'a4', 'e5', 'a5', 'c4', 'e', 'a', 'e5', 'a5', 'a4', 'e5', 'a5',
 'c4', 'd', 'f#', 'a', 'd5', 'f#4', 'a', 'd5', 'c4', 'd', 'f#', 'a', 'd5', 'f#4', 'a', 'd5',
 'b3', 'd4', 'g', 'd5', 'g5', 'g4', 'd5', 'g5', 'b3', 'd4', 'g', 'd5', 'g5', 'g4', 'd5', 'g5',
 'b3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5', 'b3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5',
 'b3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5', 'b3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5',
 'a3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5', 'a3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5',
 'd3', 'a', 'd4', 'f#', 'c5', 'd4', 'f#', 'c5', 'd3', 'a', 'd4', 'f#', 'c5', 'd4', 'f#', 'c5',
 'g3', 'b', 'd4', 'g', 'b', 'd', 'g', 'b', 'g3', 'b3', 'd4', 'g', 'b', 'd', 'g', 'b'
]

music.play(notes)

Image

The Image class is used to create images that can be displayed easily on
the device’s LED matrix. Given an image object it’s possible to display it via
the device API:

display.show(Image.HAPPY)

[image: _images/image-smile.png]

Classes

	
class microbit.Image(string)

	
class microbit.Image(width=None, height=None, buffer=None)

	If string is used, it has to consist of digits 0-9 arranged into
lines, describing the image, for example:

image = Image("90009:"
 "09090:"
 "00900:"
 "09090:"
 "90009")

will create a 5×5 image of an X. The end of a line is indicated by a colon.
It’s also possible to use a newline (n) to indicate the end of a line
like this:

image = Image("90009\n"
 "09090\n"
 "00900\n"
 "09090\n"
 "90009")

The other form creates an empty image with width columns and
height rows. Optionally buffer can be an array of
width``×``height integers in range 0-9 to initialize the image.

	
width()

	Return the number of columns in the image.

	
height()

	Return the numbers of rows in the image.

	
set_pixel(x, y, value)

	Set the brightness of the pixel at column x and row y to the
value, which has to be between 0 (dark) and 9 (bright).

This method will raise an exception when called on any of the build-in
read-only images, like Image.HEART.

	
get_pixel(x, y)

	Return the brightness of pixel at column x and row y as an
integer between 0 and 9.

	
shift_left(n)

	Return a new image created by shifting the picture left by n
columns.

	
shift_right(n)

	Same as image.shift_left(-n).

	
shift_up(n)

	Return a new image created by shifting the picture up by n rows.

	
shift_down(n)

	Same as image.shift_up(-n).

Attributes

The Image class also has the following built-in instances of itself
included as its attributes (the attribute names indicate what the image
represents):

	Image.HEART

	Image.HEART_SMALL

	Image.HAPPY

	Image.SMILE

	Image.SAD

	Image.CONFUSED

	Image.ANGRY

	Image.ASLEEP

	Image.SURPRISED

	Image.SILLY

	Image.FABULOUS

	Image.MEH

	Image.YES

	Image.NO

	Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9,
Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5,
Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1

	Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E,
Image.ARROW_SE, Image.ARROW_S, Image.ARROW_SW,
Image.ARROW_W, Image.ARROW_NW

	Image.TRIANGLE

	Image.TRIANGLE_LEFT

	Image.CHESSBOARD

	Image.DIAMOND

	Image.DIAMOND_SMALL

	Image.SQUARE

	Image.SQUARE_SMALL

	Image.RABBIT

	Image.COW

	Image.MUSIC_CROTCHET

	Image.MUSIC_QUAVER

	Image.MUSIC_QUAVERS

	Image.PITCHFORK

	Image.XMAS

	Image.PACMAN

	Image.TARGET

	Image.TSHIRT

	Image.ROLLERSKATE

	Image.DUCK

	Image.HOUSE

	Image.TORTOISE

	Image.BUTTERFLY

	Image.STICKFIGURE

	Image.GHOST

	Image.SWORD

	Image.GIRAFFE

	Image.SKULL

	Image.UMBRELLA

	Image.SNAKE

Finally, related collections of images have been grouped together:

* ``Image.ALL_CLOCKS``
* ``Image.ALL_ARROWS``

Operations

repr(image)

Get a compact string representation of the image.

str(image)

Get a readable string representation of the image.

image1 + image2

Create a new image by adding the brightness values from the two images for
each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

Compass

This module lets you access the built-in electronic compass. Before using,
the compass should be calibrated, otherwise the readings may be wrong.

Warning

Calibrating the compass will cause your program to pause until calibration
is complete. Calibration consists of a little game to draw a circle on the
LED display by rotating the device.

Functions

	
microbit.compass.calibrate()

	Starts the calibration process. An instructive message will be scrolled
to the user after which they will need to rotate the device in order to
draw a circle on the LED display.

	
microbit.compass.is_calibrated()

	Returns True if the compass has been successfully calibrated, and
returns False otherwise.

	
microbit.compass.clear_calibration()

	Undoes the calibration, making the compass uncalibrated again.

	
microbit.compass.get_x()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_y()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.get_z()

	Gives the reading of the magnetic force on the x axis, as a
positive or negative integer, depending on the direction of the
force.

	
microbit.compass.heading()

	Gives the compass heading, calculated from the above readings, as an
integer in the range from 0 to 360, representing the angle in degrees,
clockwise, with north as 0.

	
microbit.compass.get_field_strength()

	Returns an integer indication of the magnitude of the magnetic field around
the device.

Example

"""
 compass.py
    ~~~~~~~~~~

    Creates a compass.

    The user will need to calibrate the compass first. The compass uses the
    built-in clock images to display the position of the needle.

"""
from microbit import *


# Start calibrating
compass.calibrate()

# Try to keep the needle pointed in (roughly) the correct direction
while True:
    sleep(100)
    needle = ((15 - compass.heading()) // 30) % 12
    display.show(Image.ALL_CLOCKS[needle])











          

      

      

    

  

    
      
          
            
  
Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer
also provides convenience functions for detecting gestures. The
recognised gestures are: up, down, left, right, face up,
face down, freefall, 3g, 6g, 8g, shake.


Functions


	
microbit.accelerometer.get_x()

	Get the acceleration measurement in the x axis, as a positive or
negative integer, depending on the direction.






	
microbit.accelerometer.get_y()

	Get the acceleration measurement in the y axis, as a positive or
negative integer, depending on the direction.






	
microbit.accelerometer.get_z()

	Get the acceleration measurement in the z axis, as a positive or
negative integer, depending on the direction.






	
microbit.accelerometer.get_values()

	Get the acceleration measurements in all axes at once, as a three-element
tuple of integers ordered as X, Y, Z.






	
microbit.accelerometer.current_gesture()

	Return the name of the current gesture.






Note

MicroPython understands the following gesture names: "up", "down",
"left", "right", "face up", "face down", "freefall",
"3g", "6g", "8g", "shake". Gestures are always
represented as strings.




	
microbit.accelerometer.is_gesture(name)

	Return True or False to indicate if the named gesture is currently active.






	
microbit.accelerometer.was_gesture(name)

	Return True or False to indicate if the named gesture was active since the
last call.






	
microbit.accelerometer.get_gestures()

	Return a tuple of the gesture history. The most recent is listed last.






	
microbit.accelerometer.reset_gestures()

	Clears the gesture history.






Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an
answer.

# Magic 8 ball by Nicholas Tollervey. February 2016.
#
# Ask a question then shake.
#
# This program has been placed into the public domain.
from microbit import *
import random

answers = [
    "It is certain",
    "It is decidedly so",
    "Without a doubt",
    "Yes, definitely",
    "You may rely on it",
    "As I see it, yes",
    "Most likely",
    "Outlook good",
    "Yes",
    "Signs point to yes",
    "Reply hazy try again",
    "Ask again later",
    "Better not tell you now",
    "Cannot predict now",
    "Concentrate and ask again",
    "Don't count on it"
    "My reply is no",
    "My sources say no",
    "Outlook not so good",
    "Very doubtful",
]

while True:
    display.show('8')
    if accelerometer.was_gesture('shake'):
        display.clear()
        sleep(1000)
        display.scroll(random.choice(answers))
    sleep(10)





Simple Slalom. Move the device to avoid the obstacles.

# Simple Slalom by Larry Hastings, September 2015
#
# This program has been placed into the public domain.

import microbit as m
import random

p = m.display.show

min_x = -1024
max_x = 1024
range_x = max_x - min_x

wall_min_speed = 400
player_min_speed = 200

wall_max_speed = 100
player_max_speed = 50

speed_max = 12


while True:

    i = m.Image('00000:'*5)
    s = i.set_pixel

    player_x = 2

    wall_y = -1
    hole = 0

    score = 0
    handled_this_wall = False

    wall_speed = wall_min_speed
    player_speed = player_min_speed

    wall_next = 0
    player_next = 0

    while True:
        t = m.running_time()
        player_update = t >= player_next
        wall_update = t >= wall_next
        if not (player_update or wall_update):
            next_event = min(wall_next, player_next)
            delta = next_event - t
            m.sleep(delta)
            continue

        if wall_update:
            # calculate new speeds
            speed = min(score, speed_max)
            wall_speed = wall_min_speed + int((wall_max_speed - wall_min_speed) * speed / speed_max)
            player_speed = player_min_speed + int((player_max_speed - player_min_speed) * speed / speed_max)

            wall_next = t + wall_speed
            if wall_y < 5:
                # erase old wall
                use_wall_y = max(wall_y, 0)
                for wall_x in range(5):
                    if wall_x != hole:
                        s(wall_x, use_wall_y, 0)

        wall_reached_player = (wall_y == 4)
        if player_update:
            player_next = t + player_speed
            # find new x coord
            x = m.accelerometer.get_x()
            x = min(max(min_x, x), max_x)
            # print("x accel", x)
            s(player_x, 4, 0) # turn off old pixel
            x = ((x - min_x) / range_x) * 5
            x = min(max(0, x), 4)
            x = int(x + 0.5)
            # print("have", position, "want", x)

            if not handled_this_wall:
                if player_x < x:
                    player_x += 1
                elif player_x > x:
                    player_x -= 1
            # print("new", position)
            # print()

        if wall_update:
            # update wall position
            wall_y += 1
            if wall_y == 7:
                wall_y = -1
                hole = random.randrange(5)
                handled_this_wall = False

            if wall_y < 5:
                # draw new wall
                use_wall_y = max(wall_y, 0)
                for wall_x in range(5):
                    if wall_x != hole:
                        s(wall_x, use_wall_y, 6)

        if wall_reached_player and not handled_this_wall:
            handled_this_wall = True
            if (player_x != hole):
                # collision! game over!
                break
            score += 1

        if player_update:
            s(player_x, 4, 9) # turn on new pixel

        p(i)

    p(i.SAD)
    m.sleep(1000)
    m.display.scroll("Score:" + str(score))

    while True:
        if (m.button_a.is_pressed() and m.button_a.is_pressed()):
            break
        m.sleep(100)













          

      

      

    

  

    
      
          
            
  
Buttons

There are two buttons on the board, called button_a and button_b.


Attributes


	
button_a

	A Button instance (see below) representing the left button.






	
button_b

	Represents the right button.








Classes


	
class Button

	Represents a button.


Note

This class is not actually available to the user, it is only used by
the two button instances, which are provided already initialized.




	
is_pressed()

	Returns True if the specified button button is pressed, and
False otherwise.






	
was_pressed()

	Returns True or False to indicate if the button was pressed
since the device started or the last time this method was called.






	
get_presses()

	Returns the running total of button presses.






	
reset_presses()

	Resets the running total of button presses to zero.












Example

import microbit

while True:
    if microbit.button_a.is_pressed() and microbit.button_b.is_pressed():
        microbit.display.scroll("AB")
        break
    elif microbit.button_a.is_pressed():
        microbit.display.scroll("A")
    elif microbit.button_b.is_pressed():
        microbit.display.scroll("B")
    microbit.sleep(100)











          

      

      

    

  

    
      
          
            
  
Display

This module controls the 5×5 LED display on the front of your board. It can
be used to display images, animations and even text.

[image: _images/scroll-hello.gif]

Functions


	
microbit.display.get_pixel(x, y)

	Return the brightness of the LED at column x and row y as an
integer between 0 (off) and 9 (bright).






	
microbit.display.set_pixel(x, y, value)

	Set the brightness of the LED at column x and row y to value,
which has to be an integer between 0 and 9.






	
microbit.display.clear()

	Set the brightness of all LEDs to 0 (off).






	
microbit.display.show(image)

	Display the image.






	
microbit.display.show(iterable, delay, wait=True, loop=False, clear=False)

	Display images or letters from the iterable in sequence, with delay
milliseconds between them.

If wait is True, this function will block until the animation is
finished, otherwise the animation will happen in the background.

If loop is True, the animation will repeat forever.

If clear is True, the display will be cleared after the iterable has finished.






	
microbit.display.scroll(string, delay=400)

	Similar to show, but scrolls the string horizontally instead. The
delay parameter controls how fast the text is scrolling. This function
blocks until it is finished.











          

      

      

    

  

    
      
          
            
  
I²C

The i2c module lets you communicate with devices connected to your board
using the I²C bus protocol. There can be multiple slave devices connected at
the same time, and each one has its own unique address, that is either fixed
for the device or configured on it. Your board acts as the I²C master.

We use 7-bit addressing for devices because of the reasons stated
here [http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing].

This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to
send and how to interpret the responses, depends on the device in question and
should be described separately in that device’s documentation.


Functions


	
microbit.i2c.read(addr, n, repeat=False)

	Read n bytes from the device with 7-bit address addr. If repeat
is True, no stop bit will be sent.






	
microbit.i2c.write(addr, buf, repeat=False)

	Write bytes from buf to the device with 7-bit address addr. If
repeat is True, no stop bit will be sent.






Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the
device’s SDA pin to micro:bit pin 20. You also must connect the device’s
ground to the micro:bit ground (pin GND). You may need to power the device
using an external power supply or the micro:bit.

There are internal pull-up resistors on the I²C lines of the board, but with
particularly long wires or large number of devices you may need to add
additional pull-up resistors, to ensure noise-free communication.









          

      

      

    

  

    
      
          
            
  
UART

The uart module lets you talk to a device connected to your board using
a serial interface.


Functions


	
microbit.uart.init(baudrate=9600, bits=8, parity=None, stop=1, pins=None)

	Initialize serial communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.


Warning

Initializing the UART will cause the Python console on USB to become
unaccessible, as it uses the same hardware. There is currently no way
to bring the console back, without restarting the module.



The baudrate defines the speed of communication. Common baud
rates include:



	9600

	14400

	19200

	28800

	38400

	57600

	115200






The bits defines the size of bytes being transmitted, and the board
only supports 8. The parity parameter defines how parity is checked,
and it can be None, microbit.uart.ODD or microbit.uart.EVEN.
The stop parameter tells the number of stop bits, and has to be 1 for
this board.

If no pins are specified, microbit.pin0 is used as the TX pin, and
microbit.pin1 as the RX pin. You can also specify which pins you want
by passing a tuple of two pins as pins, the first one being TX, and the
second one, RX.


Note

When connecting the device, make sure you “cross” the wires – the TX
pin on your board needs to be connected with the RX pin on the device,
and the RX pin – with the TX pin on the device. Also make sure the
ground pins of both devices are connected.








	
uart.any()

	Return True if any characters waiting, else False.






	
uart.read([nbytes])

	Read characters.  If nbytes is specified then read at most that many
bytes.






	
uart.readall()

	Read as much data as possible.

Return value: a bytes object or None on timeout.






	
uart.readinto(buf[, nbytes])

	Read bytes into the buf.  If nbytes is specified then read at most
that many bytes.  Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.






	
uart.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is
included in the returned bytes.






	
uart.write(buf)

	Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.











          

      

      

    

  

    
      
          
            
  
SPI

The spi module lets you talk to a device connected to your board using
a serial peripheral interface (SPI) bus. SPI uses a so-called master-slave
architecture with a single master. You will need to specify the connections
for three signals:


	SCLK : Serial Clock (output from master).

	MOSI : Master Output, Slave Input (output from master).

	MISO : Master Input, Slave Output (output from slave).




Functions


	
microbit.spi.init(baudrate=1000000, bits=8, mode=0, sclk=pin13, mosi=pin15, miso=pin14)

	Initialize SPI communication with the specified parameters on the
specified pins. Note that for correct communication, the parameters
have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only
bits=8 is supported. However, this may change in the future.

The mode determines the combination of clock polarity and phase
according to the following convention, with polarity as the high order bit
and phase as the low order bit:








	SPI Mode
	Polarity (CPOL)
	Phase (CPHA)




	0
	0
	0


	1
	0
	1


	2
	1
	0


	3
	1
	1





Polarity (aka CPOL) 0 means that the clock is at logic value 0 when idle
and goes high (logic value 1) when active; polarity 1 means the clock is
at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock,
and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for
each type of signal.






	
spi.read(nbytes)

	Read at most nbytes. Returns what was read.






	
spi.write(buffer)

	Write the buffer of bytes to the bus.






	
spi.write_readinto(out, in)

	Write the out buffer to the bus and read any response into the in
buffer. The length of the buffers should be the same. The buffers can be
the same object.











          

      

      

    

  

    
      
          
            
  
Random Number Generation

This module is based upon the random module in the Python standard library.
It contains functions for generating random behaviour.

To access this module you need to:

import random





We assume you have done this for the examples below.


Functions


	
random.getrandbits(n)

	Returns an integer with n random bits.






Warning

Because the underlying generator function returns at most 30 bits, n
may only be a value between 1-30 (inclusive).




	
random.seed(n)

	Initialize the random number generator with a known integer n. This
will give you reproducibly deterministic randomness from a given starting
state (n).






	
random.randint(a, b)

	Return a random integer N such that a <= N <= b. Alias for
randrange(a, b+1).






	
random.randrange(stop)

	Return a randomly selected integer between zero and up to (but not
including) stop.






	
random.randrange(start, stop)

	Return a randomly selected integer from range(start, stop).






	
random.randrange(start, stop, step)

	Return a randomly selected element from range(start, stop, step).






	
random.choice(seq)

	Return a random element from the non-empty sequence seq. If seq is
empty, raises IndexError.






	
random.random()

	Return the next random floating point number in the range [0.0, 1.0)






	
random.uniform(a, b)

	Return a random floating point number N such that a <= N <= b
for a <= b and b <= N <= a for b < a.











          

      

      

    

  

    
      
          
            
  
NeoPixel

The neopixel module lets you use Neopixel (WS2812) individually addressable
RGB LED strips with the Microbit. Note to use the neopixel module, you
need to import it separately with:

import neopixel






Note

From our tests, the Microbit Neopixel module can drive up to around 256
Neopixels. Anything above that and you may experience weird bugs and
issues.



NeoPixels are fun strips of multi-coloured programmable LEDs. This module
contains everything to plug them into a micro:bit and create funky displays,
art and games such as the demo shown below.

[image: _images/neopixel.gif]
To connect a strip of neopixels you’ll need to attach the micro:bit as shown
below (assuming you want to drive the pixels from pin 0 - you can connect
neopixels to pins 1 and 2 too). The label on the crocodile clip tells you where
to attach the other end on the neopixel strip.


Warning

Do not use the 3v connector on the Microbit to power any more than 8
Neopixels at a time.

If you wish to use more than 8 Neopixels, you must use a separate 3v-5v
power supply for the Neopixel power pin.



[image: _images/neopixel-croc.png]

Classes


	
class neopixel.NeoPixel(pin, n)

	Initialise a new strip of n number of neopixel LEDs controlled via pin
pin. Each pixel is addressed by a position (starting from 0). Neopixels
are given RGB (red, green, blue) values between 0-255 as a tuple. For
example, (255,255,255) is white.


	
clear()

	Clear all the pixels.






	
show()

	Show the pixels. Must be called for any updates to become visible.












Operations

Writing the colour doesn’t update the display (use show() for that).

np[0] = (255, 0, 128)  # first element
np[-1] = (0, 255, 0)  # last element
np.show()  # only now will the updated value be shown





To read the colour of a specific pixel just reference it.

print(np[0])








Using Neopixels

Interact with Neopixels as if they were a list of tuples. Each tuple represents
the RGB (red, green and blue) mix of colours for a specific pixel. The RGB
values can range between 0 to 255.

For example, initialise a strip of 8 neopixels on a strip connected to pin0
like this:

import neopixel
np = neopixel.NeoPixel(pin0, 8)





Set pixels by indexing them (like with a Python list). For instance, to
set the first pixel to full brightness red, you would use:

np[0] = (255, 0, 0)





Or the final pixel to purple:

np[-1] = (255, 0, 255)





Get the current colour value of a pixel by indexing it. For example, to print
the first pixel’s RGB value use:

print(np[0])





Finally, to push the new colour data to your Neopixel strip, use the .show()
function:

np.show()





If nothing is happening, it’s probably because you’ve forgotten this final
step..!


Note

If you’re not seeing anything change on your Neopixel strip, make sure
you’re show() at least somewhere otherwise your updates won’t be
shown.






Example

"""
    neopixel_random.py

    Repeatedly displays random colours onto the LED strip.
    This example requires a strip of 8 Neopixels (WS2812) connected to pin0.

"""
from microbit import *
import neopixel
from random import randint

# Setup the Neopixel strip on pin0 with a length of 8 pixels
np = neopixel.NeoPixel(pin0, 8)

while True:
    #Iterate over each LED in the strip

    for pixel_id in range(0, len(np)):
        red = randint(0, 60)
        green = randint(0, 60)
        blue = randint(0, 60)

        # Assign the current LED a random red, green and blue value between 0 and 60
        np[pixel_id] = (red, green, blue)

        # Display the current pixel data on the Neopixel strip
        np.show()
        sleep(100)











          

      

      

    

  

    
      
          
            
  
Bluetooth

While the BBC micro:bit has Bluetooth Low Energy (BLE) hardware it only has
16k of RAM. The BLE stack alone takes up 12k RAM which means there’s not enough
room to (currently) run MicroPython.

Future versions of the device may come with 32k RAM which would be sufficient.
However, until such time it’s highly unlikely MicroPython will support BLE.





          

      

      

    

  

    
      
          
            
  
Installation

This section will help you set up the tools and programs needed for
developing programs and firmware to flash to the BBC micro:bit using MicroPython.


Dependencies




Development Environment

You will need:


	git

	yotta



Depending on your operating system, the installation instructions vary. Use
the installation scenario that best suits your system.




Installation Scenarios


	Windows

	OS X

	Linux

	Debian and Ubuntu

	Red Hat Fedora/CentOS

	Raspberry Pi




Windows

When installing Yotta [http://yottadocs.mbed.com/], make sure you have these components ticked to install.


	python

	gcc

	cMake

	ninja

	Yotta

	git-scm

	mbed serial driver






OS X




Linux

These steps will cover the basic flavors of Linux and working with the
micro:bit and MicroPython. See also the specific sections for Raspberry Pi,
Debian/Ubuntu, and Red Hat Fedora/Centos.


Debian and Ubuntu

sudo add-apt-repository -y ppa:terry.guo/gcc-arm-embedded
sudo add-apt-repository -y ppa:pmiller-opensource/ppa
sudo apt-get update
sudo apt-get install cmake ninja-build gcc-arm-none-eabi srecord
pip3 install yotta








Red Hat Fedora/CentOS




Raspberry Pi








Next steps

Congratulations. You have installed your development environment and are ready to
begin flashing firmware  to the micro:bit.







          

      

      

    

  

    
      
          
            
  
Flashing Firmware


Building firmware

Use yotta to build.

Use target bbc-microbit-classic-gcc-nosd:

yt target bbc-microbit-classic-gcc-nosd





Run yotta update to fetch remote assets:

yt up





Start the build with either yotta:

yt build





...or use the Makefile:

make all





The result is a microbit-micropython hex file (i.e. firmware.hex)
found in the build/bbc-microbit-classic-gcc-nosd/source from the root of the
repository.

The Makefile does some extra preprocessing of the source, which is needed only
if you add new interned strings to qstrdefsport.h. The Makefile also puts
the resulting firmware at build/firmware.hex, and includes some convenience
targets.




Preparing firmware and a Python program

tools/makecombined

hexlify




Flashing to the micro:bit

Installation Scenarios


	Windows

	OS X

	Linux

	Debian and Ubuntu

	Red Hat Fedora/CentOS

	Raspberry Pi









          

      

      

    

  

    
      
          
            
  
Accessing the REPL

Accessing the REPL on the micro:bit requires:



	Using a serial communication program

	Determining the communication port identifier for the micro:bit

	Establishing communication with the correct settings for your computer






If you are a Windows user you’ll need to install the correct drivers. The
instructions for which are found here:

https://developer.mbed.org/handbook/Windows-serial-configuration


Serial communication

To access the REPL, you need to select a program to use for serial communication.
Some common options are picocom and screen. You will need to install
program and understand the basics of connecting to a device.




Determining port

The micro:bit will have a port identifier (tty, usb) that can be used by the computer for
communicating. Before connecting to the micro:bit, we must determine the port identifier.




Establishing communication with the micro:bit

Depending on your operating system, environment, and serial communication program,
the settings and commands will vary a bit. Here are some common settings for different
systems (please suggest additions that might help others)

Settings


	Windows

	OS X

	Linux

	Debian and Ubuntu

	Red Hat Fedora/CentOS

	Raspberry Pi









          

      

      

    

  

    
      
          
            
  
Developer FAQ


Note

This project is under active development. Please help other
developers by adding tips, how-tos, and Q&A to this document.
Thanks!



Where do I get a copy of the DAL? A: Ask Nicholas Tollervey for details.





          

      

      

    

  

    
      
          
            
  
Contributing

Hey! Many thanks for wanting to improve MicroPython on the micro:bit.

Contributions are welcome without prejudice from anyone irrespective of
age, gender, religion, race or sexuality. Good quality code and engagement
with respect, humour and intelligence wins every time.


	If you’re from a background which isn’t well-represented in most geeky groups, get involved - we want to help you make a difference.

	If you’re from a background which is well-represented in most geeky groups, get involved - we want your help making a difference.

	If you’re worried about not being technical enough, get involved - your fresh perspective will be invaluable.

	If you think you’re an imposter, get involved.

	If your day job isn’t code, get involved.

	This isn’t a group of experts, just people. Get involved!

	This is a new community, so, get involved.



We expect contributors to follow the Python Software Foundation’s Code of
Conduct: https://www.python.org/psf/codeofconduct/

Feedback may be given for contributions and, where necessary, changes will
be politely requested and discussed with the originating author. Respectful
yet robust argument is most welcome.


Checklist


	Your code should be commented in plain English (British spelling).

	If your contribution is for a major block of work and you’ve not done so
already, add yourself to the AUTHORS file following the convention found
therein.

	If in doubt, ask a question. The only stupid question is the one that’s never asked.

	Have fun!









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m | 
   n | 
   r
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       microbit	
       

     
       	
       	   
       microbit.accelerometer	
       

     
       	
       	   
       microbit.compass	
       

     
       	
       	   
       microbit.display	
       

     
       	
       	   
       microbit.i2c	
       

     
       	
       	   
       microbit.spi	
       

     
       	
       	   
       microbit.uart	
       

     
       	
       	
       music	
       

     		 	

     		
       n	

     
       	
       	
       neopixel	
       

     		 	

     		
       r	

     
       	
       	
       random	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 


A


  	
      	any() (microbit.uart.uart method)


  





B


  	
      	Button (built-in class)


  

  	
      	button_a


      	button_b


  





C


  	
      	calibrate() (in module microbit.compass)


      	choice() (in module random)


      	clear() (in module microbit.display)

      
        	(neopixel.NeoPixel method)


      


  

  	
      	clear_calibration() (in module microbit.compass)


      	current_gesture() (in module microbit.accelerometer)


  





G


  	
      	get_field_strength() (in module microbit.compass)


      	get_gestures() (in module microbit.accelerometer)


      	get_pixel() (in module microbit.display)

      
        	(microbit.Image method)


      


      	get_presses() (Button method)


      	get_tempo() (in module music)


      	get_values() (in module microbit.accelerometer)


  

  	
      	get_x() (in module microbit.accelerometer)

      
        	(in module microbit.compass)


      


      	get_y() (in module microbit.accelerometer)

      
        	(in module microbit.compass)


      


      	get_z() (in module microbit.accelerometer)

      
        	(in module microbit.compass)


      


      	getrandbits() (in module random)


  





H


  	
      	heading() (in module microbit.compass)


  

  	
      	height() (microbit.Image method)


  





I


  	
      	Image (class in microbit)


      	init() (in module microbit.spi)

      
        	(in module microbit.uart)


      


  

  	
      	is_calibrated() (in module microbit.compass)


      	is_gesture() (in module microbit.accelerometer)


      	is_pressed() (Button method)


      	is_touched() (microbit.MicroBitTouchPin method)


  





M


  	
      	microbit (module), [1], [2]


      	microbit.accelerometer (module)


      	microbit.compass (module)


      	microbit.display (module)


      	microbit.i2c (module)


  

  	
      	microbit.spi (module)


      	microbit.uart (module)


      	MicroBitAnalogDigitalPin (class in microbit)


      	MicroBitDigitalPin (class in microbit)


      	MicroBitTouchPin (class in microbit)


      	music (module)


  





N


  	
      	NeoPixel (class in neopixel)


  

  	
      	neopixel (module)


  





P


  	
      	panic() (in module microbit)


  

  	
      	pitch() (in module music)


      	play() (in module music)


  





R


  	
      	randint() (in module random)


      	random (module)


      	random() (in module random)


      	randrange() (in module random), [1], [2]


      	read() (in module microbit.i2c)

      
        	(microbit.spi.spi method)


        	(microbit.uart.uart method)


      


      	read_analog() (microbit.MicroBitAnalogDigitalPin method)


  

  	
      	read_digital() (microbit.MicroBitDigitalPin method)


      	readall() (microbit.uart.uart method)


      	readinto() (microbit.uart.uart method)


      	readline() (microbit.uart.uart method)


      	reset() (in module microbit)

      
        	(in module music)


      


      	reset_gestures() (in module microbit.accelerometer)


      	reset_presses() (Button method)


      	running_time() (in module microbit)


  





S


  	
      	scroll() (in module microbit.display)


      	seed() (in module random)


      	set_analog_period() (microbit.MicroBitAnalogDigitalPin method)


      	set_analog_period_microseconds() (microbit.MicroBitAnalogDigitalPin method)


      	set_pixel() (in module microbit.display)

      
        	(microbit.Image method)


      


      	set_tempo() (in module music)


  

  	
      	shift_down() (microbit.Image method)


      	shift_left() (microbit.Image method)


      	shift_right() (microbit.Image method)


      	shift_up() (microbit.Image method)


      	show() (in module microbit.display), [1]

      
        	(neopixel.NeoPixel method)


      


      	sleep() (in module microbit)


      	stop() (in module music)


  





T


  	
      	temperature() (in module microbit)


  





U


  	
      	uniform() (in module random)


  





W


  	
      	was_gesture() (in module microbit.accelerometer)


      	was_pressed() (Button method)


      	width() (microbit.Image method)


      	write() (in module microbit.i2c)

      
        	(microbit.spi.spi method)


        	(microbit.uart.uart method)


      


  

  	
      	write_analog() (microbit.MicroBitAnalogDigitalPin method)


      	write_digital() (microbit.MicroBitDigitalPin method)


      	write_readinto() (microbit.spi.spi method)


  







          

      

      

    

  _static/up-pressed.png





_static/down.png





_static/up.png





_images/pin0-gnd.png





_images/blue-microbit.png





_images/piezo.jpg





nav.xhtml

    
      Table of Contents


      
        		BBC micro:bit MicroPython documentation


        		Introduction
          
          		Hello, World!


          		Images
            
            		DIY Images


            		Animation


            


          


          		Buttons
            
            		Event Loops


            		Handling an Event


            


          


          		Input/Output
            
            		Ticklish Python


            		Bleeps and Bloops


            


          


          		Music
            
            		Wolfgang Amadeus Microbit


            		Sound Effects


            


          


          		Random
            
            		Random Numbers


            		Seeds of Chaos


            


          


          		Movement
            
            		Musical Mayhem


            


          


          		Gestures
            
            		Magic-8


            


          


          		Direction
            
            		Compass


            


          


          		Network
            
            		Connection


            		Signal


            		Protocol


            		Message


            		Application


            		The End Result


            


          


          		Next Steps


          


        


        		Hello, World!


        		Images
          
          		DIY Images


          		Animation


          


        


        		Buttons
          
          		Event Loops


          		Handling an Event


          


        


        		Input/Output
          
          		Ticklish Python


          		Bleeps and Bloops


          


        


        		Music
          
          		Wolfgang Amadeus Microbit


          		Sound Effects


          


        


        		Random
          
          		Random Numbers


          		Seeds of Chaos


          


        


        		Movement
          
          		Musical Mayhem


          


        


        		Gestures
          
          		Magic-8


          


        


        		Direction
          
          		Compass


          


        


        		Network
          
          		Connection


          		Signal


          		Protocol


          		Message


          		Application


          		The End Result


          


        


        		Next Steps


        		micro:bit Micropython API
          
          		The microbit module
            
            		Buttons


            		The LED display


            		Pins


            		Images


            		The accelerometer


            		The compass


            		I2C bus


            		UART


            


          


          


        


        		Microbit Module
          
          		Functions


          		Attributes
            
            		Buttons


            		Input/Output Pins


            


          


          		Classes
            
            		Image


            


          


          		Modules
            
            		Display


            		UART


            		SPI


            		I²C


            		Accelerometer


            		Compass


            


          


          


        


        		Input/Output Pins
          
          		Pin Functions
            
            		Pulse-Width Modulation


            


          


          		Classes


          


        


        		Music
          
          		Musical Notation


          		Functions
            
            		Built in Melodies


            		Example


            


          


          


        


        		Image
          
          		Classes


          		Attributes


          		Operations


          


        


        		Compass
          
          		Functions


          		Example


          


        


        		Accelerometer
          
          		Functions
            
            		Examples


            


          


          


        


        		Buttons
          
          		Attributes


          		Classes


          		Example


          


        


        		Display
          
          		Functions


          


        


        		I²C
          
          		Functions
            
            		Connecting


            


          


          


        


        		UART
          
          		Functions


          


        


        		SPI
          
          		Functions


          


        


        		Random Number Generation
          
          		Functions


          


        


        		NeoPixel
          
          		Classes


          		Operations


          		Using Neopixels


          		Example


          


        


        		Bluetooth


        		Installation
          
          		Dependencies


          		Development Environment


          		Installation Scenarios
            
            		Windows


            		OS X


            		Linux


            


          


          		Next steps


          


        


        		Flashing Firmware
          
          		Building firmware


          		Preparing firmware and a Python program


          		Flashing to the micro:bit


          


        


        		Accessing the REPL
          
          		Serial communication


          		Determining port


          		Establishing communication with the micro:bit


          


        


        		Developer FAQ


        		Contributing
          
          		Checklist


          


        


      


    
  

_images/comic.png
MicroPython was created by Damien.
w from microbit import *

# Edit your code here!

display.scroll(*Hello, worldt®)






_images/pinout.png
]

a

4

S
s |
——
I
—

™
I
——
I
o
——
- ]
-
—|
I
——1
]

(=)

Reserved: accessibiity
BUTTONS

e
Cecon+——]
suron s
(n)

LEDCol T





_images/matrioshka.jpg





_images/scroll-hello.gif





_images/pwm.png





_images/neopixel-croc.png





_images/network.png





_images/happy.png





_images/queen.jpg





_images/neopixel.gif





_images/image-smile.png





_images/music-pins.png





_images/scroll-hello1.gif





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/ajax-loader.gif





